Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (8): 876-884.doi: 10.16288/j.yczz.25-077
• Review • Previous Articles Next Articles
Deyu Xu1,2(), Xi Zhou1,2(
), Yujie Ren2(
)
Received:
2025-03-18
Revised:
2025-06-24
Online:
2025-08-20
Published:
2025-07-04
Contact:
Xi Zhou, Yujie Ren
E-mail:xudeyu@mail.ustc.edu.cn;zhouxi@wh.iov.cn;renyujie@wh.iov.cn
Supported by:
Deyu Xu, Xi Zhou, Yujie Ren. RNAi-based antiviral immunity[J]. Hereditas(Beijing), 2025, 47(8): 876-884.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Mechanisms of action and examples of the four common VSRs"
VSR分类 | 作用机制 | 举例 | 相关病毒宿主 | 参考文献 |
---|---|---|---|---|
Dicer靶向 | 与Dicer-2结合,作用于其RNase III结构域,抑制该结构域对双链RNA的切割活性,使得dsRNA无法被有效切割为siRNA | 武汉野田村病毒(Wuhan Nodavirus,WhNV)的B2蛋白、DENV的NS4B蛋白等 | 蚊虫(Culicidae)、猪(Sus scrofa domesticus)、人(Homo sapiens) | [ |
dsRNA靶向 | 与dsRNA结合,抑制Dicer对dsRNA切割加工成vsiRNA的过程 | 猫疱疹病毒(feline herpesvirus,FHV)、NoV和WhNV的B2蛋白、A型流感病毒(influenza A virus,IAV)的非结构蛋白NS1、EV71的3A蛋白等 | 家猫(Felis catus)、蚊虫、猪、野生水禽、家禽、人 | [ |
vsiRNA靶向 | 与vsiRNA结合,使其无法正常组装进RISC,或者干扰RISC的正常功能,使得vsiRNA无法发挥其正常功能 | 番茄丛生矮化病毒(tomato bushy stunt virus,TBSV)的P19、柯萨奇病毒B3(coxsackievirus B3,CVB3)的13A、风疹病毒(Rubella virus,RUV)的Capsid等 | 烟草(Nicotiana tabacum)、 番茄(Solanum lycopersicum)等茄科植物;人 | [ |
AGO靶向 | 抑制AGO2的切割活性,使得RISC无法靶向切割病毒mRNA | 黑腹果蝇诺拉病毒(Drosophila melanogaster Nora virus,DmelNV)的病毒蛋白1(VP1)、蟋蟀麻痹病毒(cripavirus,CrPV)1A蛋白 | 黑腹果蝇(Drosophila melanogaster)、蟋蟀(Gryllulus)等 | [ |
[1] |
Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. Antiviral RNA interference in mammalian cells. Science, 2013, 342(6155): 235-238.
pmid: 24115438 |
[2] |
Qiu Y, Xu YP, Zhang Y, Zhou H, Deng YQ, Li XF, Miao M, Zhang Q, Zhong B, Hu YY, Zhang FC, Wu LG, Qin CF, Zhou X. Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity, 2018, 46(6): 780-781.
pmid: 30332633 |
[3] |
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol, 2007, 25(12): 1435-1443.
pmid: 18066040 |
[4] |
Fang Y, Liu ZZ, Qiu Y, Kong J, Fu YH, Liu YJ, Wang C, Quan J, Wang Q, Xu W, Yin L, Cui J, Xu Y, Curry S, Jiang SB, Lu L, Zhou X. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity, 2021, 54(10): 2231-2244.e6.
pmid: 34555337 |
[5] | Anobile DP, Poirier EZ. RNA interference, an emerging component of antiviral immunity in mammals. Biochem Soc Trans, 2023, 51(1): 137-146. |
[6] |
Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature, 2009, 457(7228): 405-412.
pmid: 19158786 |
[7] | Wang HL, Wang XN, Chen DH. piRNA biogenesis in Drosophila ovary. Sci Sin Vitae, 2016, 46(1): 52-65. |
王海龙, 王晓娜, 陈大华. 果蝇卵巢中的 piRNA 发生. 中国科学:生命科学, 2016, 46(1): 52-65. | |
[8] |
Ding SW. RNA-based antiviral immunity. Nat Rev Immunol, 2010, 10(9): 632-644.
pmid: 20706278 |
[9] | He M, Wang ZW. Current status and development of miRNA and siRNA research on gastric cancer. Hereditas (Beijing), 2011, 33(9): 925-930. |
何苗, 王子卫. miRNA与siRNA胃癌相关研究的现状及进展. 遗传, 2011, 33(9): 925-930. | |
[10] |
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655.
pmid: 19239886 |
[11] |
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.
pmid: 10778853 |
[12] |
Nykänen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107(3): 309-321.
pmid: 11701122 |
[13] |
Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14(7): 447-459.
pmid: 23732335 |
[14] | Li C, Du ZY, Chen JX. Structural and functional elucidation of AGO proteins. Chin J Biochem Mol Biol, 2009, 25(11): 4-11. |
李超, 杜志游, 陈集双. 解读AGO蛋白结构及其功能. 中国生物化学与分子生物学报, 2009, 25(11): 4-11. | |
[15] |
Verdel A, Jia ST, Gerber S, Sugiyama T, Gygi S, Grewal SIS, Moazed D. RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 2004, 303(5658): 672-676.
pmid: 14704433 |
[16] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.
pmid: 8252621 |
[17] |
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5): 855-862.
pmid: 8252622 |
[18] |
Sarett SM, Nelson CE, Duvall CL. Technologies for controlled, local delivery of siRNA. J Control Release, 2015, 218: 94-113.
pmid: 26476177 |
[19] | Zhang C, Pang QH. Silencing mechanisms of siRNA and miRNA in organisms. Chin J Biochem Mol Biol, 2012, 28(5): 393-398. |
张超, 庞全海. siRNA与miRNA在生物体基因调控中沉默机制的比较. 中国生物化学与分子生物学报, 2012, 28(5): 393-398. | |
[20] | Zhang CJ, Mo BX, Chen XM, Cui J. Advances on the molecular action mechanisms of plant miRNA. Biotechnol Bull, 2020, 36(7): 1-14. |
张翠桔, 莫蓓莘, 陈雪梅, 崔洁. 植物miRNA作用方式的分子机制研究进展. 生物技术通报, 2020, 36(7): 1-14. | |
[21] |
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol, 2023, 24(2): 123-141.
pmid: 36104626 |
[22] |
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet, 2019, 20(2): 89-108.
pmid: 30446728 |
[23] |
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet, 2018, 52: 131-157.
pmid: 30476449 |
[24] |
Guo ZX, Li Y, Ding SW. Small RNA-based antimicrobial immunity. Nat Rev Immunol, 2019, 19(1): 31-44.
pmid: 30301972 |
[25] |
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441): 950-952.
pmid: 10542148 |
[26] |
Cullen BR. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol, 2006, 7: 563-567.
pmid: 16715068 |
[27] |
Berkhout B. RNAi-mediated antiviral immunity in mammals. Curr Opin Virol, 2018, 32: 9-14.
pmid: 30015014 |
[28] |
Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130(3): 413-426.
pmid: 17693253 |
[29] |
van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjær S, Snijders AP, Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer- dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J, 2018, 37(4): e97479.
pmid: 29351913 |
[30] |
Qiu Y, Xu YP, Wang M, Miao M, Zhou H, Xu JY, Kong J, Zheng D, Li RT, Zhang RR, Guo Y, Li XF, Cui J, Qin CF, Zhou X. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci Adv, 2020, 6(6): eaax7989.
pmid: 32076641 |
[31] |
Kong J, Bie YY, Ji WT, Xu JY, Lyu B, Xiong XB, Qiu Y, Zhou X. Alphavirus infection triggers antiviral RNAi immunity in mammals. Cell Rep, 2023, 42(5): 112441.
pmid: 37104090 |
[32] |
Chen JY, Mu JF, Zhou KP, Zhang YM, Zhang JL, Shu T, Shang WJ, Ren YJ, Xu XQ, Zhang LK, Yuan S, Zhang DY, Cai K, Qiu Y, Zhou X. Targeting viral suppressor of RNAi confers anti-coronaviral activity. Mol Ther, 2025, 33(1): 201-214.
pmid: 39663700 |
[33] |
Song LP, Liu H, Gao SJ, Jiang W, Huang WL. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 2010, 84(17): 8849-60.
pmid: 20554777 |
[34] |
Wen WT, He ZJ, Jing QL, Hu YW, Lin CJ, Zhou R, Wang XQ, Su YF, Yuan JH, Chen ZX, Yuan J, Wu JH, Li J, Zhu X, Li MF. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus. J Infect, 2015, 70(6): 631-640.
pmid: 25499200 |
[35] |
Castrillón-Betancur JC, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Mem Inst Oswaldo Cruz, 2017, 112(4): 281-291.
pmid: 28327787 |
[36] |
Yuan M, Tian XY, Ma WY, Zhang R, Zou X, Jin Y, Zheng N, Wu ZW, Wang YX. miRNA-431-5p enriched in EVs derived from IFN-β stimulated MSCs potently inhibited ZIKV through CD95 downregulation. Stem Cell Res Ther, 2024, 15(1): 435.
pmid: 39563434 |
[37] |
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol, 2007, 25(12): 1435-43.
pmid: 18066040 |
[38] |
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol, 2022, 23(10): 645-662.
pmid: 35710830 |
[39] |
Guo HY, Song XG, Xie CM, Huo Y, Zhang FJ, Chen XY, Geng YF, Fang RX. Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol Plant Microbe Interact, 2013, 26(8): 927-936.
pmid: 23634838 |
[40] |
Cai DW, Qiu Y, Qi N, Yan R, Lin MJ, Nie DB, Zhang JM, Hu YY. Characterization of Wuhan Nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. Virus Res, 2010, 151(2): 153-161.
pmid: 20441781 |
[41] |
Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol, 2013, 87(16): 8870-8883.
pmid: 23741001 |
[42] |
Chen G, Han QX, Li WX, Hai R, Ding SW. Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells. Proc Natl Acad Sci USA, 2024, 121(17): e2321170121.
pmid: 38630724 |
[43] |
García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology, 1998, 252(2): 324-330.
pmid: 9878611 |
[44] |
Liu YK, Zhang L, Zhang YY, Liu DD, Du EQ, Yang ZQ. Functional analysis of RNAi suppressor P19 on improving baculovirus yield and transgene expression in Sf9 cells. Biotechnol Lett, 2015, 37(11): 2159-2166.
pmid: 26187316 |
[45] |
Mu JF, Zhang HB, Li T, Shu T, Qiu Y, Zhou X. The 3A protein of coxsackievirus B3 acts as a viral suppressor of RNA interference. J Gen Virol, 2020, 101(10): 1069-1078.
pmid: 32667281 |
[46] |
Xu JY, Kong J, Lyu B, Wang XT, Qian Q, Zhou X, Qiu Y. The capsid protein of Rubella Virus antagonizes RNA interference in mammalian cells. Viruses, 2021, 13(2): 154.
pmid: 33494454 |
[47] |
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP.. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog, 2014, 10(7): e1004256.
pmid: 25032815 |
[48] |
Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng CH, Krutchinsky A, Gross J, Antoniewski C, Andino R. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol, 2010, 17(5): 547-54.
pmid: 20400949 |
[49] |
Miao YX, Fu C, Yu ZJ, Yu LF, Tang Y, Wei MJ. Current status and trends in small nucleic acid drug development: leading the future. Acta Pharm Sin B, 2024, 14(9): 3802-3817.
pmid: 39309508 |
[50] |
Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen JZ. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA, 2004, 101(23): 8676-8681.
pmid: 15173599 |
[51] | Zhang WH, Lin ZQ, Zhuo M, Du HL, Wang XN. Research progress on influenza antiviral small RNAs. Hereditas (Beijing), 2012, 34(5): 526-532. |
郑维豪, 林志强, 卓敏, 杜红丽, 王小宁. 抗流感病毒小RNAs研究进展. 遗传, 2012, 34(5): 526-532. | |
[52] |
Li BJ, Tang QQ, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu YJ, Zheng BJ, Woodle MC, Zhong NS, Lu PY. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med, 2005, 11(9): 944-951.
pmid: 16116432 |
[53] |
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym, 2021, 260: 117809.
pmid: 33712155 |
[54] |
Crunkhorn S. Extrahepatic oligonucleotide delivery. Nat Rev Drug Discov, 2023, 22(8): 623.
pmid: 37400709 |
[55] |
Sanchez-David RY, Maillard PV. Unlocking the therapeutic potential of antiviral RNAi. Immunity, 2021, 54(10): 2180-2182.
pmid: 34644551 |
[56] |
Xu YP, Qiu Y, Zhang BY, Chen GL, Chen Q, Wang M, Mo F, Xu JY, Wu J, Zhang RR, Cheng ML, Zhang NN, Lyu B, Zhu WL, Wu MH, Ye Q, Zhang D, Man JH, Li XF, Cui J, Xu ZH, Hu BY, Zhou X, Qin CF. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res, 2019, 29(4): 265-273.
pmid: 30814679 |
[57] |
Zhang QZ, Zhang CH, Xi Z. Enhancement of RNAi by a small molecule antibiotic enoxacin. Cell Res, 2008, 18(10): 1077-1079.
pmid: 18813225 |
[58] |
Lyu B, Wang C, Bie YY, Kong J, Wang A, Jin L, Qiu Y, Zhou X. Enoxacin shows broad-spectrum antiviral activity against diverse viruses by enhancing antiviral RNA interference in insects. J Virol, 2022, 96(4): e0177821.
pmid: 34908449 |
[59] |
Wu QN, Li LX, Jia Y, Xu TL, Zhou X. Advances in studies of circulating microRNAs: origination, transportation, and distal target regulation. J Cell Commun Signal, 2023, 17(3): 445-455.
pmid: 36357651 |
[60] |
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem, 2021, 69(48): 14372-14386.
pmid: 34813309 |
[61] |
Zhou Z, Li XH, Liu JX, Dong L, Chen Q, Liu JL, Kong HH, Zhang QY, Qi X, Hou DX, Zhang L, Zhang GQ, Liu YC, Zhang YJ, Li J, Wang J, Chen X, Wang H, Zhang JF, Chen HL, Zen K, Zhang CY. Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses. Cell Res, 2015, 25(1): 39-49.
pmid: 25287280 |
[62] |
Zhang S, Sang XL, Hou DX, Chen JM, Gu HW, Zhang YJ, Li J, Yang DR, Zhu HZ, Yang X, Wang FY, Zhang CN, Chen X, Zen K, Zhang CY, Hong Z. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials, 2019, 210: 83-93.
pmid: 31078314 |
[63] | Tao H, Chen R, Gao Q. Effects of cross-kingdom regulation by microRNAs in plants. Chin J Biochem Mol Biol, 2023, 39(12): 1685-1695. |
陶涵金, 陈冉, 高崎. 植物microRNA跨界调控作用. 中国生物化学与分子生物学报, 2023, 39(12): 1685-1695. |
[1] | Mengwei Guo, Youhong Fan, Guodong Ren. Molecular basis of microRNA stability and degradation in plants [J]. Hereditas(Beijing), 2025, 47(8): 944-957. |
[2] | Huaihao Yang, Binglian Zheng. Biogenesis, action, function of plant small RNAs and their potential application in agriculture [J]. Hereditas(Beijing), 2025, 47(8): 928-943. |
[3] | Xiao Zhang, Yan Yu, Yong Ning, Qiwen Hong, Huaiping Shi. Advances in microRNA promoting gene expression [J]. Hereditas(Beijing), 2025, 47(7): 729-741. |
[4] | Zhang Yiwen, Huang Qin, Wu Yanyun, Sun Yue, Wei Yonglong. Progress on the role of LIN28A/B in tumor development and progression [J]. Hereditas(Beijing), 2024, 46(6): 452-465. |
[5] | Yan Zhu, Ming Wei, Xiao Zhou, Linhua Deng, Jian Qiu, Guo Li, Shiqiang Zhou, Hao Xie, Desheng Li, Chengdong Wang. Progress on miRNA in giant panda (Ailuropoda melanoleuca) [J]. Hereditas(Beijing), 2021, 43(9): 849-857. |
[6] | Yong Wei, Yulan He, Xueli Zheng. Research progress in RNA interference against the infection of mosquito-borne viruses [J]. Hereditas(Beijing), 2020, 42(2): 153-160. |
[7] | Wenquan Liang,Yu Hou,Cunyou Zhao. Schizophrenia-associated single nucleotide polymorphisms affecting microRNA function [J]. Hereditas(Beijing), 2019, 41(8): 677-685. |
[8] | Yakun Song,Min Zhang,Qiaochu Wang,Yuli Peng,Fangxing Jia,Chunhong Yu. Laboratory design and practice for undergraduates: Using RNAi to modulate gene expression [J]. Hereditas(Beijing), 2019, 41(7): 653-661. |
[9] | Lin Rao, Feilong Meng, Ran Fang, Chenyi Cai, Xiaoli Zhao. Molecular mechanism of microRNA in regulating cochlear hair cell development [J]. Hereditas(Beijing), 2019, 41(11): 994-1008. |
[10] | Xia Mengmeng,Shen Xueyi,Niu Changmin,Xia Jing,Sun Hongya,Zheng Ying. MicroRNA regulates Sertoli cell proliferation and adhesion [J]. Hereditas(Beijing), 2018, 40(9): 724-732. |
[11] | Hailong Liu, Yang Shen, Yang Gao, Ling Zhou, Xiaosong Han, Changzhi Zhao, Gaojuan Yang, Yilong Chen, Hui Yang, Shengsong Xie. Assessing abundance and specificity of different types of sgRNA targeting miRNA precursors [J]. Hereditas(Beijing), 2018, 40(7): 561-571. |
[12] | Huawei Zhang, Xingyu Meng, anfeng Li, Yuying Yang, Huaji Qiu. Long non-coding RNAs: Emerging regulators of antiviral innate immune responses [J]. Hereditas(Beijing), 2018, 40(7): 525-533. |
[13] | Juan Xiao, Xun Wang, Yi Luo, Xiaokai Li, Xuewei Li. Research progress in sRNAs and functional proteins in epididymosomes [J]. Hereditas(Beijing), 2018, 40(3): 197-206. |
[14] | Xinyun Li, Liangliang Fu, Huijun Cheng, Shuhong Zhao. Advances on microRNA in regulating mammalian skeletal muscle development [J]. Hereditas(Beijing), 2017, 39(11): 1046-1053. |
[15] | Chendong Liu, Lu Yang, Hongzhou Pu, Qiong Yang, Wenyao Huang, Xue Zhao, Li Zhu, Shunhua Zhang. Epigenetics regulates gene expression patterns of skeletal muscle induced by physical exercise [J]. Hereditas(Beijing), 2017, 39(10): 888-896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号