| [1] | Chu SY, Weng CY . Introduction to genetic/rare disease and the application of genetic counseling. Hu Li Za Zhi, 2017,64(5):11-17. | | [1] | 褚思义, 翁纯英 . 遗传/罕见病简介及遗传咨询的应用. 护理杂志, 2017,64(5):11-17. | | [2] | Darrow JJ . Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today, 2019,24(4):949-954. | | [3] | Han X, Ni W . Cost-Effectiveness analysis of glybera for the treatment of lipoprotein lipase deficiency. Value Health, 2015,18(7):A756. | | [4] | Schimmer J, Breazzano S . Investor outlook: rising from the ashes; GSK's European approval of strimvelis for ADA-SCID. Hum Gene Ther Clin Dev, 2016,27(2):57-61. | | [5] | Gupta SK, Shukla P . Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol, 2017,37(5):672-684. | | [6] | Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S . Homologous recombination and non- homologous end-joining pathways of DNA double- strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J, 1998,17(18):5497-5508. | | [7] | Lieber MR, Ma Y, Pannicke U, Schwarz K . Mechanism and regulation of human non-homologous DNA end- joining. Nat Rev Mol Cell Bio, 2003,4(9):712-720. | | [8] | Joung JK, Sander JD . TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Bio, 2012,14(1):49-55. | | [9] | Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014,32(4):347-355. | | [10] | Komor AC, Badran AH, Liu DR . CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell, 2017,168(1-2):20-36. | | [11] | Marcaida MJ, Prieto J, Redondo P . Crystal structure of I-DmoI in complex with its target DNA provides new insights into meganuclease engineering. Proc Natl Acad Sci USA, 2008,105(44):16888-16893. | | [12] | Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P . A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res, 2006,34(22):e149. | | [13] | Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F . Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr Gene Ther, 2011,11(1):11-27. | | [14] | Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, Che Y, Lape J, Bell P, Calcedo R, Buza EL, Saveliev A, Bartsevich |
| [1] |
Xun Zhou, Shijie Zhou, Jie Liu, Yuxiang Wang.
CRISPR/Cas system targeting RNA and its derivative technology
[J]. Hereditas(Beijing), 2025, 47(8): 842-860.
|
| [2] |
Jiaxin Ni, Wei Zhang.
Progress and prospects on evolutionary developmental biology of butterfly wing patterns
[J]. Hereditas(Beijing), 2025, 47(2): 258-270.
|
| [3] |
Dongxia Pan, Hui Wang, Benhai Xiong, Xiangfang Tang.
Progress on CRISPR-Cas gene editing technology in sheep production
[J]. Hereditas(Beijing), 2024, 46(9): 690-700.
|
| [4] |
Sen Yang, Baoxia Ma, Hongrun Qian, Jieyu Cui, Xiaojun Zhang, Lida Li, Zehui Wei, Zhiying Zhang, Jiangang Wang, Kun Xu.
CRISPR/Gal4BD-Cas donor adapting systems based on miniaturized Cas proteins for improved gene editing
[J]. Hereditas(Beijing), 2024, 46(9): 716-726.
|
| [5] |
Ma Baoxia, Yang Sen, Lyu Ming, Wang Yuren, Chang Liye, Han Yifan, Wang Jiangang, Guo Yang, Xu Kun.
Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing
[J]. Hereditas(Beijing), 2024, 46(6): 466-477.
|
| [6] |
Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li.
Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility
[J]. Hereditas(Beijing), 2024, 46(4): 333-345.
|
| [7] |
Yanchun Bao, Lingli Dai, Zaixia Liu, Fengying Ma, Yu Wang, Yongbin Liu, Mingjuan Gu, Risu Na, Wenguang Zhang.
Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry
[J]. Hereditas(Beijing), 2024, 46(3): 219-231.
|
| [8] |
Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang.
Revelation of rice molecular design breeding: the blend of tradition and modernity
[J]. Hereditas(Beijing), 2023, 45(9): 718-740.
|
| [9] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
| [10] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
| [11] |
Yuting Han, Bowen Xu, Yutong Li, Xinyi Lu, Xizhi Dong, Yuhao Qiu, Qinyun Che, Ruibao Zhu, Li Zheng, Xiaochen Li, Xu Si, Jianquan Ni.
The cutting edge of gene regulation approaches in model organism Drosophila
[J]. Hereditas(Beijing), 2022, 44(1): 3-14.
|
| [12] |
Dingwei Peng, Ruiqiang Li, Wu Zeng, Min Wang, Xuan Shi, Jianhua Zeng, Xiaohong Liu, Yaoshen Chen, Zuyong He.
Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs
[J]. Hereditas(Beijing), 2021, 43(3): 261-270.
|
| [13] |
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang.
Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals
[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
|
| [14] |
Yingnan Chen, Jing Lu.
Application of CRISPR/Cas9 mediated gene editing in trees
[J]. Hereditas(Beijing), 2020, 42(7): 657-668.
|
| [15] |
Lianchao Tang, Feng Gu.
Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM
[J]. Hereditas(Beijing), 2020, 42(3): 236-249.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|