Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (1): 45-56.doi: 10.16288/j.yczz.19-266
• Special Section: 3D Genome • Previous Articles Next Articles
Xiaomeng Gao1,2, Zhihua Zhang1,2(
)
Received:2019-09-04
Revised:2019-11-04
Online:2020-01-20
Published:2019-12-05
Contact:
Zhang Zhihua
E-mail:zhangzhihua@big.ac.cn
Supported by:Xiaomeng Gao, Zhihua Zhang. Three-dimensional structure and function of chromatin regulated by “liquid-liquid phase separation” of biological macromolecules.[J]. Hereditas(Beijing), 2020, 42(1): 45-56.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] |
Mitrea DM, Kriwacki RM . Phase separation in biology; functional organization of a higher order. Cell Commun Signal, 2016,14:1.
doi: 10.1186/s12964-015-0125-7 pmid: 26727894 |
| [2] |
Uversky VN . Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder . Curr Opin Struct Biol, 2017,44:18-30.
doi: 10.1016/j.sbi.2016.10.015 pmid: 27838525 |
| [3] |
Banani SF, Lee OH, Hyman AA, Rosen MK . Biomolecular condensates: organizers of cellular biochemistry . Nat Rev Mol Cell Biol, 2017,18(5):285-298.
doi: 10.1038/nrm.2017.7 pmid: 28225081 |
| [4] |
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA . Germline P granules are liquid droplets that localize by controlled dissolution/condensation . Science, 2009,324(5935):1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965 |
| [5] |
Brangwynne CP, Mitchison TJ, Hyman AA . Active liquid-like behavior of nucleoli determines their size and shape in xenopus laevis oocytes . Proc Natl Acad Sci USA, 2011,108(11):4334-4339.
doi: 10.1073/pnas.1017150108 pmid: 21368180 |
| [6] |
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin MV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels . Cell, 2012,149(4):753-767.
doi: 10.1016/j.cell.2012.04.017 |
| [7] |
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ . Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles . Mol Cell, 2015,57(5):936-947.
doi: 10.1016/j.molcel.2015.01.013 pmid: 25747659 |
| [8] |
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK . Phase transitions in the assembly of multivalent signalling proteins . Nature, 2012,483(7389):336-340.
doi: 10.1038/nature10879 |
| [9] |
Deichmann U . Chromatin: its history, current research, and the seminal researchers and their philosophy . Perspect Biol Med, 2015,58(2):143-164.
doi: 10.1353/pbm.2015.0024 pmid: 26750599 |
| [10] |
Wu RB, Li PL . Liquid-liquid separation and biomolecular condensation. Chin Sci Bull, 2019,64(22):2285-2291.
doi: 10.1360/N972019-00281 |
|
吴荣波, 李丕龙 . 液-液相分离与生物分子凝集体. 科学通报, 2019,64(22):2285-2291.
doi: 10.1360/N972019-00281 |
|
| [11] |
Ramaswami M, Taylor JP, Parker R . Altered ribostasis: RNA-protein granules in degenerative disorders . Cell, 2013,154(4):727-736.
doi: 10.1016/j.cell.2013.07.038 |
| [12] |
King OD, Gitler AD, Shorter J . The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease . Brain Res, 2012,1462:61-80.
doi: 10.1016/j.brainres.2012.01.016 |
| [13] |
Alberti S, Halfmann R, King O, Kapila A, Lindquist S . A systematic survey identifies prions and illuminates sequence features of prionogenic proteins . Cell, 2009,137(1):146-158.
doi: 10.1016/j.cell.2009.02.044 pmid: 19345193 |
| [14] |
Fromm SA, Kamenz J, Nöldeke ER, Neu A, Zocher G, Sprangers R . In vitro reconstitution of a cellular phase- transition process that involves the mRNA decapping machinery . Angew Chem Int Ed Engl, 2014,53(28):7354-7359.
doi: 10.1002/anie.201402885 pmid: 24862735 |
| [15] |
Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 2016, 166(5): 1163-1175.e12.
doi: 10.1016/j.cell.2016.07.008 pmid: 27565345 |
| [16] |
Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M, Brangwynne CP. Liquid nuclear condensates mechanically sense and sestructure the genome. Cell, 2018, 175(6): 1481-1491.e13.
doi: 10.1016/j.cell.2018.10.057 pmid: 30500535 |
| [17] |
Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT . A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS . Science, 2019,363(6431):1098-1103.
doi: 10.1126/science.aau5721 pmid: 30846600 |
| [18] |
Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE . Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1 . Nat Struct Mol Biol, 2006,13(9):798-805.
doi: 10.1038/nsmb1133 pmid: 16906159 |
| [19] |
Bandaru P, Kondo Y, Kuriyan J . The interdependent activation of Son-of-Sevenless and Ras . Cold Spring Harb Perspect Med, 2019,9(2):a031534.
doi: 10.1101/cshperspect.a031534 pmid: 29610148 |
| [20] |
Nag A, Monine MI, Faeder JR, Goldstein B . Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system . Biophys J, 2009,96(7):2604-2623.
doi: 10.1016/j.bpj.2009.01.019 pmid: 19348745 |
| [21] |
Huang WYC, Ditlev JA, Chiang HK, Rosen MK, Groves JT . Allosteric modulation of Grb2 recruitment to the intrinsically disordered scaffold protein, LAT, by Remote Site Phosphorylation . . Am Chem Soc, 2017,139(49):18009-18015.
doi: 10.1021/jacs.7b09387 pmid: 29182244 |
| [22] |
Huang WYC, Chiang HK, Groves JT . Dynamic scaling analysis of molecular motion within the LAT:Grb2:SOS protein network on membranes . Biophys J, 2017,113(8):1807-1813.
doi: 10.1016/j.bpj.2017.08.024 pmid: 29045874 |
| [23] |
Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 2017, 168(6): 1028-1040.e19.
doi: 10.1016/j.cell.2017.02.027 pmid: 28283059 |
| [24] |
Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S,. Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359(6371): eaa05654.
doi: 10.1126/science.359.6371.126 pmid: 29302016 |
| [25] |
Li YR, King OD, Shorter J, Gitler AD . Stress granules as crucibles of ALS pathogenesis. . Cell Biol, 2013,201(3):361-372.
doi: 10.1083/jcb.201302044 pmid: 23629963 |
| [26] |
Brundin P, Melki R, Kopito R . Prion-like transmission of protein aggregates in neurodegenerative diseases . Nat Rev Mol Cell Biol, 2010,11(4):301-307.
doi: 10.1038/nrm2873 pmid: 20308987 |
| [27] |
Shulman JM, De Jager P, Feany MB . Parkinson's disease: genetics and pathogenesis . Annu Rev Pathol, 2011,6(1):193-222.
doi: 10.1146/annurev-pathol-011110-130242 |
| [28] |
Robberecht W, Philips T . The changing scene of amyotrophic lateral sclerosis . Nat Rev Neurosci, 2013,14(4):248-264.
doi: 10.1038/nrn3430 |
| [29] |
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S . A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation . Cell, 2015,162(5):1066-1077.
doi: 10.1016/j.cell.2015.07.047 pmid: 26317470 |
| [30] |
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP,. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS . Nature, 2013,495(7442):467-473.
doi: 10.1038/nature11922 |
| [31] |
Murakami T, Qamar S, Lin JQ, Schierle GS, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FT, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P. ALS/FTD mutation- induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function . Neuron, 2015,88(4):678-690.
doi: 10.1016/j.neuron.2015.10.030 pmid: 26526393 |
| [32] |
Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D . The 3D profile method for identifying fibril-forming segments of proteins . Proc Natl Acad Sci USA, 2006,103(11):4074-4078.
doi: 10.1073/pnas.0511295103 pmid: 16537487 |
| [33] |
Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao J, McKnight SL. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies . Cell, 2012,149(4):768-779.
doi: 10.1016/j.cell.2012.04.016 |
| [34] |
Schwartz JC, Wang X, Podell ER, Cech TR . RNA seeds higher-order assembly of FUS protein . Cell Rep, 2013,5(4):918-925.
doi: 10.1016/j.celrep.2013.11.017 pmid: 24268778 |
| [35] |
Schwartz JC, Cech TR, Parker RR . Biochemical properties and biological functions of FET proteins . Annu Rev Biochem, 2015,84:355-379.
doi: 10.1146/annurev-biochem-060614-034325 pmid: 25494299 |
| [36] |
Cleary JD, Ranum LP . Repeat-associated non-ATG (RAN) translation in neurological disease . Hum Mol Genet, 2013,22(R1):R45-51.
doi: 10.1093/hmg/ddt371 pmid: 23918658 |
| [37] |
Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D . The C9orf72 GGGGCC repeat is translated into aggregating dipeptide- repeat proteins in FTLD/ALS . Science, 2013,339(6125):1335-1338.
doi: 10.1126/science.1232927 |
| [38] |
Lin MT, Beal MF . Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases . Nature, 2006,443(7113):787-795.
doi: 10.1038/nature05292 pmid: 17051205 |
| [39] |
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N . The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data . Cancer Discov, 2012,2(5):401-404.
doi: 10.1158/2159-8290.CD-12-0095 |
| [40] |
Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang CY, Hager GL, Saatcioglu F . Ligand-specific dynamics of the androgen receptor at its response element in living cells . Mol Cell Biol, 2007,27(5):1823-1843.
doi: 10.1128/MCB.01297-06 pmid: 17189428 |
| [41] | Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW, Sabri N, Granata D, Marzahn MR, Lindorff-Larsen K, Salvatella X, Schulman BA, Mittag T. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell, 2018, 72(1): 19- 36. e8. |
| [42] |
Wojciechowska M, Krzyzosiak WJ . Cellular toxicity of expanded RNA repeats: focus on RNA foci . Hum Mol Genet, 2011,20(19):3811-3821.
doi: 10.1093/hmg/ddr299 |
| [43] |
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP , Coexisting liquid phases underlie nucleolar subcompartments . Cell, 2016,165(7):1686-1697.
doi: 10.1016/j.cell.2016.04.047 pmid: 27212236 |
| [44] |
Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172.
doi: 10.1038/nbt.3383 pmid: 26458175 |
| [45] |
Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567.
doi: 10.1038/nmeth.1626 pmid: 21642965 |
| [46] |
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J . Comprehensive mapping of long- range interactions reveals folding principles of the human genome . Science, 2009,326(5950):289-293.
doi: 10.1126/science.1181369 pmid: 19815776 |
| [47] |
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping . Cell, 2014,159(7):1665-1680.
doi: 10.1016/j.cell.2014.11.021 |
| [48] |
Buenrostro JD, Wu BJ, Chang HY, Greenleaf WJ,. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol, 2015, 109: 21.29.1- 21.29. 9.
doi: 10.1186/s12864-018-4559-3 pmid: 29490630 |
| [49] |
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ . Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position . Nat Methods, 2013,10(12):1213-1218.
doi: 10.1038/NMETH.2688 |
| [50] |
Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179(2): 470-484.e21.
doi: 10.1016/j.cell.2019.08.037 pmid: 31543265 |
| [51] |
Xu BX, Zhang ZH . Computational inference of physical spatial organization of eukaryotic genomes . Quant Biol, 2016,4(4):302-309.
doi: 10.1007/s40484-016-0082-1 |
| [52] |
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH . Phase separation drives heterochromatin domain formation . Nature, 2017,547(7662):241-245.
doi: 10.1038/nature22989 pmid: 28636597 |
| [53] |
Mao YS, Zhang B, Spector DL . Biogenesis and function of nuclear bodies . Trends Genet, 2011,27(8):295-306.
doi: 10.1016/j.tig.2011.05.006 |
| [54] |
Erdel F, Rippe K . Formation of chromatin subcompartments by phase separation . Biophys J, 2018,114(10):2262-2270.
doi: 10.1016/j.bpj.2018.03.011 pmid: 29628210 |
| [55] |
Ruthenburg AJ, Li H, Patel DJ, Allis CD . Multivalent engagement of chromatin modifications by linked binding modules . Nat Rev Mol Cell Biol, 2007,8(12):983-994.
doi: 10.1038/nrm2298 pmid: 18037899 |
| [56] |
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA . Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell, 2013,153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 |
| [57] |
Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA . A phase separation model for transcriptional control . Cell, 2017,169(1):13-23.
doi: 10.1016/j.cell.2017.02.007 pmid: 28340338 |
| [58] |
Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young PA. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361(6400): eaar3958.
doi: 10.1126/science.361.6409.1410 pmid: 30262504 |
| [59] |
Brent R, Ptashne M . A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor . Cell, 1985,43(3 Pt 2):729-736.
doi: 10.1016/0092-8674(85)90246-6 pmid: 3907859 |
| [60] |
Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R . TFCat: the curated catalog of mouse and human transcription factors . Genome Biol, 2009,10(3):R29.
doi: 10.1186/gb-2009-10-3-r29 pmid: 19284633 |
| [61] |
Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TL, Taatjes DJ, Young RA. Transcription factors activate genes through the phase- separation capacity of their activation domains. Cell, 2018,175(7): 1842-1855.e16.
doi: 10.1016/j.cell.2018.10.042 pmid: 30449618 |
| [62] |
Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, Stuart HT, Polo JM, Ohsumi TK, Borowsky ML, Kharchenko PV, Park PJ, Hochedlinger K . Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming . Cell Stem Cell, 2013,12(6):699-712.
doi: 10.1016/j.stem.2013.04.013 |
| [63] |
Cramer P . Organization and regulation of gene transcription . Nature, 2019,573(7772):45-54.
doi: 10.1038/s41586-019-1517-4 pmid: 31462772 |
| [64] |
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker TM, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates . Nature, 2019,572(7770):543-548.
doi: 10.1038/s41586-019-1464-0 pmid: 31391587 |
| [1] | Lina Zhu, Xu Wang, Xihan Guo. Hematopoietic mosaic loss of Y chromosome: from population cohorts to pathogenic mechanisms [J]. Hereditas(Beijing), 2025, 47(4): 409-427. |
| [2] | Yulan Lu, Guozhuang Li, Yaqiong Wang, Kexin Xu, Xinran Dong, Jihao Cai, Bingbing Wu, Huijun Wang, Ping Fang, Jian Wang, Hua Wang, Luming Sun, Yongyu Ye, Qing Li, Yaping Liu, Li Liu, Ning Liu, Jiaqi Liu, Fang Song, Lin Yang, Zhengqing Qiu, Zefu Chen, Huaxia Luo, Dan Guo, Chanjuan Hao, Sen Zhao, Shangzhi Huang, Jing Peng, Xiaoqiang Cai, Ruifang Sui, Linkang Li, Nan Wu, Wenhao Zhou, Shuyang Zhang. Expert consensus on clinical genome sequencing interpretation and reporting [J]. Hereditas(Beijing), 2025, 47(3): 314-328. |
| [3] | Jialin Ren, Yize Tong, Rui Cai. Advances of m6A modification of chromatin-associated RNAs regulating chromatin accessibility and gene transcription [J]. Hereditas(Beijing), 2025, 47(11): 1186-1196. |
| [4] | Jilong Wang, Qing Li, Tingzheng Zhan. Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research [J]. Hereditas(Beijing), 2024, 46(8): 589-602. |
| [5] | Yunfei Yang, Yidong Shen. Choroid plexus and its relations with age-related diseases [J]. Hereditas(Beijing), 2024, 46(2): 109-125. |
| [6] | Qi Li, Zhicheng Dong, Min Liu. The carboxy-terminal domain of RNA polymerase II large subunit: simple repeats are not simple [J]. Hereditas(Beijing), 2024, 46(12): 1028-1041. |
| [7] | Bingqian Zhou, Shangpu Li, Xu Wang, Xiangyu Meng, Jingrong Deng, Jinliang Xing, Jiangang Wang, Kun Xu. Dual-localization signals enhance mitochondrial targeted presentation of engineered proteins [J]. Hereditas(Beijing), 2024, 46(11): 937-946. |
| [8] | Luyan Tian, Xiaozhen Huang. Application value of protein phase separation mechanism of flowering regulation in de novo domestication [J]. Hereditas(Beijing), 2023, 45(9): 754-764. |
| [9] | Ruijia Song, Lu Han, Haifeng Sun, Bin Shen. Advances in mitochondrial DNA base editing technology [J]. Hereditas(Beijing), 2023, 45(8): 632-642. |
| [10] | Shan He, Jian Zhao, Xiaofeng Song. Effects of N6-methyladenosine modification on the function of the female reproductive system [J]. Hereditas(Beijing), 2023, 45(6): 472-487. |
| [11] | Shunze Wang, Feng Jiang, Dongli Zhu, Tie-Lin Yang, Yan Guo. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis [J]. Hereditas(Beijing), 2023, 45(4): 279-294. |
| [12] | Xin Yang, Yongxiang Wu, Yu Leng, Jiachen Li, Chaojie Wang, Yimei Yuan, Zhen Wang, Lan Zhang, Hao Li, Wei Liu. Epidemiololgical and etiological analysis of two clusters of severe fever with thrombocytopenia syndrome [J]. Hereditas(Beijing), 2023, 45(11): 1062-1073. |
| [13] | Zhenrong Yang, Gangqiao Zhou. The application of CRISPR genome editing technologies in the pathogenesis studies, diagnosis, prevention and treatment of infectious diseases [J]. Hereditas(Beijing), 2023, 45(11): 950-962. |
| [14] | Meng Yuan, Hui Li, Shouzhi Wang. Massively parallel reporter assay: a novel technique for analyzing the regulation of gene expression [J]. Hereditas(Beijing), 2023, 45(10): 859-873. |
| [15] | Dandan Wu, Mingkun Zhu, Zhongyan Fang, Wei Ma. Progress on molecular composition and genetic mechanism of plant B chromosomes [J]. Hereditas(Beijing), 2022, 44(9): 772-782. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号