Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (2): 172-182.doi: 10.16288/j.yczz.19-214
• Research Article • Previous Articles Next Articles
Hong Xiang(), Xiaohu Yang, Liangxia Ai, Yanping Pan, Yong Hu(
)
Received:
2019-10-02
Revised:
2019-12-13
Online:
2020-02-20
Published:
2019-12-23
Supported by:
Hong Xiang, Xiaohu Yang, Liangxia Ai, Yanping Pan, Yong Hu. Bioinformatics analysis of differentially expressed genes on alopecia[J]. Hereditas(Beijing), 2020, 42(2): 172-182.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Safavi KH, Muller SA, Suman VJ, Moshell AN, Melton LJ . Incidence of alopecia areata in olmsted county, minnesota, 1975 through 1989. Mayo Clin Proc, 1995,70(7):628-633.
doi: 10.4065/70.7.628 pmid: 7791384 |
[2] |
Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP . Alopecia areata. Nat Rev Dis Primers, 2017,3:17011.
doi: 10.1038/nrdp.2017.11 pmid: 28300084 |
[3] | Liu LY, King BA , Craiglow BG. Health-related quality of life(HRQoL)among patients with alopecia areata(AA): A systematic review. J Am Acad Dermatol, 2016, 75(4): 806-812.e3. |
[4] |
Hunt N , McHale S. The psychological impact of alopecia. BMJ, 2005,331(7522):951-953.
doi: 10.1136/bmj.331.7522.951 pmid: 16239692 |
[5] |
Singam V, Patel KR, Lee HH, Rastogi S, Silverberg JI . Association of alopecia areata with hospitalization for mental health disorders in US adults. J Am Acad Dermatol, 2019,80(3):792-794.
doi: 10.1016/j.jaad.2018.07.044 pmid: 30092332 |
[6] |
Rencz F, Gulácsi L, Péntek M, Wikonkál N, Baji P, Brodszky V . Alopecia areata and health-related quality of life: a systematic review and meta-analysis. Br J Dermatol. 2016,175(3):561-571.
doi: 10.1111/bjd.14497 pmid: 26914830 |
[7] |
Xing LZ, Dai ZP, Jabbari A, Cerise JE, Higgins CA , Gong WJ, de Jong A, Harel S, DeStefano GM, Rothman L, Singh P, Petukhova L, Mackay-Wiggan J, Christiano AM, Clynes R. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med, 2014,20(9):1043-1049.
doi: 10.1038/nm.3645 pmid: 25129481 |
[8] |
The Gene Ontology Consortium . The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res, 2019,47(D1):D330-d338.
doi: 10.1093/nar/gky1055 pmid: 30395331 |
[9] |
Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009,37(1):1-13.
doi: 10.1093/nar/gkn923 pmid: 19033363 |
[10] |
Chen HA, Pan JY, Chiang CH, Jhang AH, Ho WT . New idea for hair transplantation to preserve more donor hair follicles. Med Hypotheses, 2019,128:83-85.
doi: 10.1016/j.mehy.2019.05.018 pmid: 31203916 |
[11] |
Afifi L, Maranda EL, Zarei M, Delcanto GM, Falto- Aizpurua L, Kluijfhout WP, Jimenez JJ . Low-level laser therapy as a treatment for androgenetic alopecia. Lasers Surg Med, 2017,49(1):27-39.
doi: 10.1002/lsm.22512 pmid: 27114071 |
[12] |
Tekin NS, Tekin IO, Cinar S, Altinyazar HC, Koca R, Esturk E . The PUVA-turban as an alternative treatment of alopecia associated with chronic graft versus host disease. J Am Acad Dermatol, 2005,53(5):902-903.
doi: 10.1016/j.jaad.2005.04.078 pmid: 16243155 |
[13] |
Lee HW, Jun JH, Lee JA, Lim HJ, Lim HS, Lee MS . Acupuncture for treating alopecia areata: a protocol of systematic review of randomised clinical trials. BMJ Open, 2015,5(10):e008841.
doi: 10.1136/bmjopen-2015-008841 pmid: 26503391 |
[14] |
Suchonwanit P, Srisuwanwattana P, Chalermroj N, Khunkhet S . A randomized, double-blind controlled study of the efficacy and safety of topical solution of 0.25% finasteride admixed with 3% minoxidil vs. 3% minoxidil solution in the treatment of male androgenetic alopecia. J Eur Acad Dermatol Venereol, 2018,32(12):2257-2263.
doi: 10.1111/jdv.15171 pmid: 29972712 |
[15] |
Durdu M, Özcan D, Baba M, Seçkin D . Efficacy and safety of diphenylcyclopropenone alone or in combination with anthralin in the treatment of chronic extensive alopecia areata: a retrospective case series. J Am Acad Dermatol, 2015,72(4):640-650.
doi: 10.1016/j.jaad.2015.01.008 pmid: 25653027 |
[16] |
Rodrigues BL, Montalvão SAL, Cancela RBB, Silva FAR, Urban A, Huber SC, Júnior JLRC, Lana JFSD, Annichinno- Bizzacchi JM . Treatment of male pattern alopecia with platelet-rich plasma: A double-blind controlled study with analysis of platelet number and growth factor levels. J Am Acad Dermatol, 2019,80(3):694-700.
doi: 10.1016/j.jaad.2018.09.033 pmid: 30287324 |
[17] |
Sundberg JP, Boggess D, Montagutelli X, Hogan ME, King LE Jr . C3H/HeJ mouse model for alopecia areata. J Invest Dermatol, 1995,104(5 Suppl):16s-17s.
doi: 10.1038/jid.1995.38 pmid: 7738375 |
[18] |
Subramanya RD, Coda AB, Sinha AA . Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics, 2010,96(3):146-153.
doi: 10.1016/j.ygeno.2010.05.002 pmid: 20546884 |
[19] |
Kawano M, Umeda S, Yasuda T, Fujita M, Ishikawa A, Imamura T, Imai T, Nakayama F . FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling. Adv Radiat Oncol, 2016,1(3):170-181.
doi: 10.1016/j.adro.2016.05.004 pmid: 28740887 |
[20] |
Midorikawa T, Chikazawa T, Yoshino T, Takada K, Arase S . Different gene expression profile observed in dermal papilla cells related to androgenic alopecia by DNA macroarray analysis. J Dermatol Sci, 2004,36(1):25-32.
doi: 10.1016/j.jdermsci.2004.05.001 pmid: 15488702 |
[21] |
Plikus MV, Widelitz RB, Maxson R, Chuong CM . Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. Int J Dev Biol, 2009,53(5-6):857-868.
doi: 10.1387/ijdb.072564mp pmid: 19378257 |
[22] |
Renninger ML, Seymour RE, Whiteley LO, Sundberg JP, Hogenesch H . Anti-IL5 decreases the number of eosinophils but not the severity of dermatitis in Sharpin-deficient mice. Exp Dermatol, 2010,19(3):252-258.
doi: 10.1111/j.1600-0625.2009.00944.x pmid: 19650867 |
[23] |
Duncan FJ, Silva KA, Johnson CJ, King BL, Szatkiewicz JP, Kamdar SP, Ong DE, Napoli JL, Wang J, King LE Jr, Whiting DA , McElwee KJ, Sundberg JP, Everts HB. Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol, 2013,133(2):334-343.
doi: 10.1038/jid.2012.344 pmid: 23014334 |
[24] | Zainodini N, Hassanshahi G, Arababadi MK, Khorramdelazad H, Mirzaei A . Differential expression of CXCL1, CXCL9, CXCL10 and CXCL12 chemokines in alopecia areata. Iran J Immunol, 2013,10(1):40-46. |
[25] |
Maouia A, Sormani L, Youssef M, Helal AN, Kassab A, Passeron T . Differential expression of CXCL9, CXCL10, and IFN-γ in vitiligo and alopecia areata patients. Pigment Cell Melanoma Res, 2017,30(2):259-261.
doi: 10.1111/pcmr.12559 pmid: 27863059 |
[26] |
Bilgic O, Sivrikaya A, Unlu A, Altinyazar HC . Serum cytokine and chemokine profiles in patients with alopecia areata. J Dermatolog Treat, 2016,27(3):260-263.
doi: 10.3109/09546634.2015.1093591 pmid: 26367497 |
[27] |
McPhee CG, Duncan FJ, Silva KA, King LE Jr, Hogenesch H, Roopenian DC, Everts HB, Sundberg JP . Increased expression of Cxcr3 and its ligands, Cxcl9 and Cxcl10, during the development of alopecia areata in the mouse. J Invest Dermatol, 2012,132(6):1736-1738.
doi: 10.1038/jid.2012.17 pmid: 22358057 |
[28] |
Suárez-Fariñas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, Czernik A, Zheng X, Estrada YD, Xu H, Peng X, Shemer A, Krueger JG, Lebwohl MG, Guttman-Yassky E . Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/ TH22 skewing. J Allergy Clin Immunol, 2015,136(5):1277-1287.
doi: 10.1016/j.jaci.2015.06.032 pmid: 26316095 |
[29] |
Dai Z, Xing L, Cerise J, Wang EH , Jabbari A, de Jong A, Petukhova L, Christiano AM, Clynes R. CXCR3 blockade inhibits T Cell migration into the skin and prevents development of alopecia areata. J Immunol, 2016,197(4):1089-1099.
doi: 10.4049/jimmunol.1501798 pmid: 27412416 |
[30] |
Ito T, Hashizume H, Shimauchi T, Funakoshi A, Ito N, Fukamizu H, Takigawa M, Tokura Y . CXCL10 produced from hair follicles induces Th1 and Tc1 cell infiltration in the acute phase of alopecia areata followed by sustained Tc1 accumulation in the chronic phase. J Dermatol Sci, 2013,69(2):140-147.
doi: 10.1016/j.jdermsci.2012.12.003 pmid: 23312578 |
[31] |
Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R . Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev, 2016,15(7):726-735.
doi: 10.1016/j.autrev.2016.03.008 pmid: 26971464 |
[32] |
Strazzulla LC, Wang EHC, Avila L, Lo Sicco K, Brinster N, Christiano AM, Shapiro J . Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol, 2018,78(1):1-12.
doi: 10.1016/j.jaad.2017.04.1141 pmid: 29241771 |
[33] |
Liu LY, Craiglow BG, Dai F, King BA . Tofacitinib for the treatment of severe alopecia areata and variants: A study of 90 patients. J Am Acad Dermatol, 2017,76(1):22-28.
doi: 10.1016/j.jaad.2016.09.007 pmid: 27816293 |
[34] |
Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, Furniss M, Vaughan R, Christiano AM, Clynes R . Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight, 2016,1(15):e89790.
doi: 10.1172/jci.insight.89790 pmid: 27699253 |
[35] |
Jabbari A, Dai Z, Xing L, Cerise JE, Ramot Y, Berkun Y, Sanchez GA, Goldbach-Mansky R, Christiano AM, Clynes R, Zlotogorski A . Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine, 2015,2(4):351-355.
doi: 10.1016/j.ebiom.2015.02.015 pmid: 26137574 |
[36] |
Chelidze K, Lipner SR . Nail changes in alopecia areata: an update and review. Int J Dermatol, 2018,57(7):776-783.
doi: 10.1111/ijd.13866 pmid: 29318582 |
[37] |
Kasumagic-Halilovic E, Prohic A . Nail changes in alopecia areata: frequency and clinical presentation. J Eur Acad Dermatol Venereol, 2009,23(2):240-241.
doi: 10.1111/j.1468-3083.2008.02830.x pmid: 18540984 |
[38] |
Hamed FN , McDonagh AJG, Almaghrabi S, Bakri Y, Messenger AG, Tazi-Ahnini R. Epigallocatechin-3 gallate inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and reduces CD8 MKG2D lymphocytes of alopecia areata patients. Int J Environ Res Public Health, 2018,15(12).
doi: 10.3390/ijerph15122882 pmid: 30558329 |
[39] |
Shi JX, Peng P, Liu WX, Mi P, Xing C, Ning GZ, Feng SQ . Bioinformatics analysis of genes associated with the patchy-type alopecia areata: CD2 may be a new therapeutic target. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2019, 1-7.
doi: 10.5507/bp.2019.049 pmid: 31558844 |
[40] |
Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY, Ueha S, Horiuchi K, Tanizaki H, Kabashima K, Kubo A, Cho YH, Clausen BE, Matsushima K, Suematsu M, Furtado GC, Lira SA, Farber JM, Udey MC, Amagai M . Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol, 2012,13(8):744-752.
doi: 10.1038/ni.2353 pmid: 22729248 |
[41] |
Ibusuki A, Nishikawa T, Hiraki T, Okano T, Imai K, Kanegane H, Ohnishi H, Kato Z, Fujii K, Tanimoto A, Kawano Y, Kanekura T . Prominent dermal Langerhans cells in an Omenn syndrome patient with a novel mutation in the IL2RG gene. J Dermatol, 2019,46(11):1019-1023.
doi: 10.1111/1346-8138.15054 pmid: 31456262 |
[42] |
Jiang W, Fan YX, Qiao X, Zhang YJ, Liu ZH, Zhao YH, Wang RJ, Wang ZX, Zhang WG, Su R, Li JQ . The transcriptome research progresses of skin hair follicle development. Hereditas(Beijing), 2015,37(6):528-534.
doi: 10.16288/j.yczz.14-440 pmid: 26351048 |
江玮, 范一星, 乔贤, 张燕军, 刘志红, 赵艳红, 王瑞军, 王志新, 张文广, 苏蕊, 李金泉 . 皮肤毛囊发育的转录组研究进展. 遗传, 2015,37(6):528-534.
doi: 10.16288/j.yczz.14-440 pmid: 26351048 |
[1] | Yao Chen, Xin Wen, Fangyuan Yuan, Chaoling Peng, Cuizhe Wang, Jun Zhang, Pingping Meng. Screening and validation of downstream target genes of SLC25A21 based on bioinformatics [J]. Hereditas(Beijing), 2024, 46(12): 1055-1065. |
[2] | Shanshan Wang, Wanyi Zhao, Huixiao Wu, Meng Shu, Jiaxin Yuan, Li Fang, Chao Xu. Research on the variants of FGFR1 and CEP290 genes in idiopathic hypogonadotropin hypogonadism [J]. Hereditas(Beijing), 2022, 44(10): 937-949. |
[3] | Hongqiang Lyu, Lele Hao, Erhu Liu, Zhifang Wu, Jiuqiang Han, Yuan Liu. Current status and future perspectives in bioinformatical analysis of Hi-C data [J]. Hereditas(Beijing), 2020, 42(1): 87-99. |
[4] | Chao He,Wenlong Shen,Ping Li,Yan Zhang,Jing Zeng,Zuoming Yin,Zhihu Zhao. Bioinformatics analysis of Alu components at the level of genome 3D structure [J]. Hereditas(Beijing), 2019, 41(3): 254-261. |
[5] | Yuansheng Zhang,Lin Xia,Jian Sang,Man Li,Lin Liu,Mengwei Li,Guangyi Niu,Jiabao Cao,Xufei Teng,Qing Zhou,Zhang Zhang. The BIG Data Center’s database resources [J]. Hereditas(Beijing), 2018, 40(11): 1039-1043. |
[6] | Yi Luo, Xun Wang, Yao Ma, Xiaokai Li. The biological function of pigeon crop milk and the regulation of its production [J]. Hereditas(Beijing), 2017, 39(12): 1158-1167. |
[7] | Xiaohua Xiang, Xinru Wu, Jiangtao Chao, Minglei Yang, Fan Yang, Guo Chen, Guanshan Liu, Yuanying Wang. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.) [J]. Hereditas(Beijing), 2016, 38(9): 840-856. |
[8] | Xiaoxu Li, Cheng Liu, Wei Li, Zenglin Zhang, Xiaoming Gao, Hui Zhou, Yongfeng Guo. Genome-wide identification, phylogenetic analysis and expression profiling of the WOX family genes in Solanum lycopersicum [J]. HEREDITAS(Beijing), 2016, 38(5): 444-460. |
[9] | Xue Zhou, Yilan Du, Ping Jin, Fei Ma. Bioinformatic analysis of cancer-related microRNAs and their target genes [J]. HEREDITAS(Beijing), 2015, 37(9): 855-864. |
[10] | Xiang Fang, Ningqiu Li, Xiaozhe Fu, Kaibin Li, Qiang Lin, Lihui Liu, Cunbin Shi, Shuqin Wu. Construction and application of bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer [J]. HEREDITAS(Beijing), 2015, 37(7): 702-710. |
[11] | Hongmei Qiu, Wenyuan Hao, Shuqin Gao, Xiaoping Ma, Yuhong Zheng, Fanfan Meng, Xuhong Fan, Yang Wang, Yueqiang Wang, Shuming Wang. Gene mining of sulfur-containing amino acid metabolic enzymes in soybean [J]. HEREDITAS(Beijing), 2014, 36(9): 934-942. |
[12] | Yang Shi, Xiao Xu, Haoyang Li, Qian Xu, Jichen Xu. Bioinformatics analysis of the expansin gene family in rice [J]. HEREDITAS(Beijing), 2014, 36(8): 809-820. |
[13] | Lu Qi, Yanqing Ding. Involvement of the CREB5 regulatory network in colorectal cancer metastasis [J]. HEREDITAS(Beijing), 2014, 36(7): 679-684. |
[14] | Xianzhi Chen, Yan Wang, Jianlei Shi, Longjing Zhu, Kelei Wang, Jian Xu. Genome-wide identification, sequence characteristic and expression analysis of heat shock factors (HSFs) in cucumber [J]. HEREDITAS, 2014, 36(4): 376-386. |
[15] | Yan Cheng, Lin Chen, Xin Cao, Siqimeige Ha, Xiaodong Xie. Expression profiling and functional analysis of hsa-miR-125b and its target genes in drug-resistant cell line of human gastric cancer [J]. Hereditas(Beijing), 2014, 36(2): 119-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号