Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (11): 1066-1077.doi: 10.16288/j.yczz.21-162
• Orginal Articles • Previous Articles Next Articles
Baosong Xing1(), Jing Wang1(
), Junfeng Chen1, Qiang Ma1, Qiaoling Ren1, Jiaqing Zhang1, Hua Zhang1, Liushuai Hua1, Jiajie Sun2, Hai Cao3
Received:
2021-04-27
Revised:
2021-07-28
Online:
2021-11-20
Published:
2021-08-24
Contact:
Wang Jing
E-mail:bsxing@126.com;wangjing_0407@163.com
Supported by:
Baosong Xing, Jing Wang, Junfeng Chen, Qiang Ma, Qiaoling Ren, Jiaqing Zhang, Hua Zhang, Liushuai Hua, Jiajie Sun, Hai Cao. Analysis of differentially expressed circRNAs in longissimus muscle between castrated and intact male pigs[J]. Hereditas(Beijing), 2021, 43(11): 1066-1077.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
GO enriched analysis of DECs’ parent genes between castrated and intact groups"
类型 | GO通路 | GO编号 | 富集基因数 |
---|---|---|---|
细胞 组分 | 细胞内部分 | GO:0044424 | 1732 |
细胞内 | GO:0005622 | 1813 | |
细胞内膜结合细胞器 | GO:0043231 | 1369 | |
细胞内细胞器 | GO:0043229 | 1492 | |
膜结合细胞器 | GO:0043227 | 1498 | |
细胞器 | GO:0043226 | 1605 | |
核部分 | GO:0044428 | 615 | |
细胞内细胞器部分 | GO:0044446 | 983 | |
细胞器部分 | GO:0044422 | 993 | |
核 | GO:0005634 | 882 | |
生物 过程 | 细胞大分子代谢过程 | GO:0044260 | 1097 |
细胞代谢过程 | GO:0044237 | 1374 | |
大分子代谢过程 | GO:0043170 | 1184 | |
细胞器组织 | GO:0006996 | 503 | |
初级代谢过程 | GO:0044238 | 1380 | |
有机物代谢过程 | GO:0071704 | 1414 | |
细胞蛋白质代谢过程 | GO:0044267 | 660 | |
代谢过程 | GO:0008152 | 1600 | |
细胞成分的组织或 生物发生 | GO:0071840 | 769 | |
细胞成分组织 | GO:0016043 | 744 | |
分子 功能 | 蛋白质结合 | GO:0005515 | 1709 |
杂环化合物结合 | GO:1901363 | 801 | |
有机环状化合物结合 | GO:0097159 | 804 | |
核酸结合 | GO:0003676 | 466 | |
酶结合 | GO:0019899 | 263 | |
结合 | GO:0003723 | 143 | |
核苷酸结合 | GO:0000166 | 442 | |
磷酸核苷结合 | GO:1901265 | 442 | |
小分子结合 | GO:0036094 | 461 | |
催化活性 | GO:0003824 | 949 |
[1] |
Trefan L, Doeschl-Wilson A, Rooke JA, Terlouw C, Bünger L. Meta-analysis of effects of gender in combination with carcass weight and breed on pork quality. J Anim Sci, 2013, 91(3):1480-1492.
doi: 10.2527/jas.2012-5200 pmid: 23296818 |
[2] |
Li Y, Wang MM, Li QF, Gao YX, Li Q, Li JG, Cao YF. Transcriptome profiling of longissimus lumborum in Holstein bulls and steers with different beef qualities. PLoS One, 2020, 15(6):e0235218.
doi: 10.1371/journal.pone.0235218 |
[3] |
Zhou ZK, Gao X, Li JY, Chen JB, Xu SZ. Effect of castration on carcass quality and differential gene expression of longissimus muscle between steer and bull. Mol Biol Rep, 2011, 38(8):5307-5312.
doi: 10.1007/s11033-011-0680-y |
[4] |
Zhang YY, Wang HB, Wang YN, Wang HC, Zhang S, Hong JY, Guo HF, Chen D, Yang Y, Zan LS. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. PLoS One, 2017, 12(10):e0185961.
doi: 10.1371/journal.pone.0185961 |
[5] | Wang J, Hua LS, Chen JF, Zhang JQ, Ren QL, Bai HJ, Guo HX, Xu ZX, Xing BS, Bai XX, Cao H. Effect of castration on gene expression in Longissimus dorsi muscle of Huainan male pig by transcriptome analysis. Acta Vet Et Zootech Sin, 2019, 50(9):1746-1758. |
王璟, 滑留帅, 陈俊峰, 张家庆, 任巧玲, 白红杰, 郭红霞, 徐照学, 邢宝松, 白献晓, 曹海. 去势对淮南公猪背最长肌转录组的影响. 畜牧兽医学报, 2019, 50(9):1746-1758. | |
[6] |
Bai Y, Huang JM, Liu G, Zhang JB, Wang JY, Liu CK, Fang MY. A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs. BMC Genomics, 2014, 15:47.
doi: 10.1186/1471-2164-15-47 |
[7] |
Cai ZW, Zhang LF, Chen ML, Jiang XL, Xu NY. Castration-induced changes in microRNA expression profiles in subcutaneous adipose tissue of male pigs. J Appl Genet, 2014, 55(2):259-266.
doi: 10.1007/s13353-014-0194-0 |
[8] | Cai ZW, Zhang LF, Jiang XL, Sheng YF, Xu NY. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Res Veter Sci, 2015, 99:99-104. |
[9] |
Wang J, Hua LS, Chen JF, Zhang JQ, Bai XX, Gao BW, Li CJ, Shi ZH, Sheng WD, Gao Y, Xing BS. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC Genomics, 2017, 18(1):542.
doi: 10.1186/s12864-017-3907-z |
[10] |
Xing BS, Bai XX, Guo HX, Chen JF, Hua LS, Zhang JQ, Ma Q, Ren QL, Wang HS, Wang J. Long non-coding RNA analysis of muscular responses to testosterone deficiency in Huainan male pigs. Anim Sci J, 2017, 88(9):1451-1456.
doi: 10.1111/asj.2017.88.issue-9 |
[11] |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I. Circ-ZNF609 is a circular rna that can be translated and functions in myogenesis. Mol Cell, 2017, 66(1): 22-37.e29.
doi: S1097-2765(17)30132-6 pmid: 28344082 |
[12] |
Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, Chen C, Yan KW, Ponnusamy M, Zhang YH, Li PF. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ, 2017, 24(6):1111-1120.
doi: 10.1038/cdd.2017.61 pmid: 28498369 |
[13] | Ouyang HJ, Chen XL, Li WM, Li ZH, Nie QH, Zhang XQ. Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Fron Genet, 2018, 9:172. |
[14] |
Li H, Wei XF, Yang JM, Dong D, Hao D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Lin FP, Bai YY, Chen H. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther Nucleic Acids, 2018, 11:272-283.
doi: 10.1016/j.omtn.2018.02.012 |
[15] |
Li H, Yang JM, Wei XF, Song CC, Dong D, Huang YZ, Lan XY, Plath M, Lei CZ, Ma Y, Qi XL, Bai YY, Chen H. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J Cell Physiol, 2018, 233(6):4643-4651.
doi: 10.1002/jcp.v233.6 |
[16] |
Yue BL, Wang J, Ru WX, Wu JY, Cao XK, Yang HY, Huang YZ, Lan XY, Lei CZ, Huang BZ, Chen H. The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development. Mol Ther Nucleic Acids, 2020, 19:1086-1097.
doi: 10.1016/j.omtn.2019.12.039 |
[17] |
Shen XM, Zhang XY, Ru WX, Huang YZ, Lan XY, Lei CZ, Chen H. circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a. Mol Ther Nucleic Acids, 2020, 19:986-999.
doi: 10.1016/j.omtn.2019.12.032 |
[18] |
Liu YJ, Liu HT, Li Y, Mao R, Yang HW, Zhang YC, Zhang Y, Guo PS, Zhan DF, Zhang TT. circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/ EZH2 axis. Theranostics, 2020, 10(10):4705-4719.
doi: 10.7150/thno.42417 |
[19] | Yang LY, Bin Z, Hui S, Rong L, You BS, Wu PP, Han XY, Qian H, Xu WR. The role of CDR1as in proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells. Stem Cell Int, 2019, 2019:2316834. |
[20] |
Jiang R, Li H, Yang JM, Shen XM, Song CC, Yang ZX, Wang XG, Huang YZ, Lan XY, Lei CZ, Chen H. circRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7. Mol Ther Nucleic Acids, 2020, 20:491-501.
doi: 10.1016/j.omtn.2020.03.011 |
[21] |
Zhou L, Chen JH, Li ZZ, Li XX, Hu XD, Huang Y, Zhao XK, Liang CZ, Wang Y, Sun L, Shi M, Xu XH, Shen F, Chen MS, Han ZJ, Peng ZY, Zhai QN, Chen J, Zhang ZF, Yang RL, Ye JX, Guan ZC, Yang HM, Gui YT, Wang J, Cai ZM, Zhang XQ. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One, 2010, 5(12):e15224.
doi: 10.1371/journal.pone.0015224 |
[22] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12):550.
doi: 10.1186/s13059-014-0550-8 |
[23] |
Cai ZW, Zhang LF, Chen ML, Jiang XL, Xu NY. Castration-induced changes in microRNA expression profiles in subcutaneous adipose tissue of male pigs. J Appl Genet, 2014, 55(2):259-266.
doi: 10.1007/s13353-014-0194-0 |
[24] | Li JX, Su T, Zou C, Luo WZ, Shi GL, Chen L, Fang CC, Li CC. Long non-coding RNAH19 regulates porcine satellite cell differentiation through miR-140-5p/SOX4 and DBN1. Fron Cell Dev Biol, 2020, 8:518724. |
[25] | Sun WX, Sun XC, Chu WW, Yu SG, Dong FL, Xu GF. circRNA expression profiles in human visceral preadipocytes and adipocytes. Mol Med Rep, 2020, 21(2):815-821. |
[26] |
Xu TY, Wu J, Han P, Zhao ZM, Song XF. circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genomics, 2017, 18(Suppl 6):680.
doi: 10.1186/s12864-017-4029-3 |
[27] | Mohammadabadi M, Bordbar F, Jensen J, Du M, Guo W. Key genes regulating skeletal muscle development and growth in farm animals. Animals (Basel), 2021, 11(3):835. |
[28] |
Chen K, Cheng HH, Zhou RJ. Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway. Hereditas (Beijing), 2012, 34(1):5-18.
doi: 10.3724/SP.J.1005.2012.00005 |
陈科, 程汉华, 周荣家. 自噬与泛素化蛋白降解途径的分子机制及其功能. 遗传, 2012, 34(1):5-18.
doi: 10.3724/SP.J.1005.2012.00005 |
|
[29] |
Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil, 2005, 26(6-8):389-400.
doi: 10.1007/s10974-005-9021-x |
[30] |
Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA, 2004, 101(52):18135-18140.
doi: 10.1073/pnas.0404341102 |
[31] |
Shen LY, Zhang SH, Wu ZH, Zheng MY, Li XW, Zhu L. The influence of satellite cells on meat quality and its differential regulation. Hereditas (Beijing), 2013, 35(9):1081-1086.
doi: 10.3724/SP.J.1005.2013.01081 |
沈林園, 张顺华, 吴泽辉, 郑梦月, 李学伟, 朱砺. 骨骼肌卫星细胞对肉品质的影响及其分化调控. 遗传, 2013, 35(9):1081-1086.
doi: 10.3724/SP.J.1005.2013.01081 |
|
[32] |
Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol, 2009, 107(3):645-654.
doi: 10.1152/japplphysiol.00452.2009 pmid: 19608931 |
[33] |
Salanova M, Schiffl G, Püttmann B, Schoser BG, Blottner D. Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures. J Anat, 2008, 212(3):306-318.
doi: 10.1111/j.1469-7580.2008.00854.x pmid: 18221329 |
[34] |
Millward DJ. Interactions between growth of muscle and stature: mechanisms involved and their nutritional sensitivity to dietary protein: the protein-stat revisited. Nutrients, 2021, 13(3):729.
doi: 10.3390/nu13030729 |
[35] |
Volke L, Krause K. Effect of thyroid hormones on adipose tissue flexibility. Eur Thyroid J, 2021, 10(1):1-9.
doi: 10.1159/000508483 pmid: 33777816 |
[36] |
Reggio A, Rosina M, Palma A, Cerquone Perpetuini A, Petrilli LL, Gargioli C, Fuoco C, Micarelli E, Giuliani G, Cerretani M, Bresciani A, Sacco F, Castagnoli L, Cesareni G. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ, 2020, 27(10):2921-2941.
doi: 10.1038/s41418-020-0551-y |
[37] |
Park YK, Park B, Lee S, Choi K, Moon Y, Park H. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J Biol Chem, 2013, 288(36):26311-26322.
doi: 10.1074/jbc.M113.500835 |
[38] |
Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AMC, Evans DJR, Francis-West P. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development, 2003, 130(15):3503-3514.
pmid: 12810597 |
[39] | Jiang YL, Lian ZX, Li N, Wu CX. Myostatin: a negative regulator of skeletal muscle mass. Hereditas (Beijing), 2000, 22(2):119-121. |
姜运良, 连正兴, 李宁, 吴常信. 肌肉生长抑制素基因的研究进展. 遗传, 2000, 22(2):119-121. | |
[40] | Kido K, Egawa T, Fujiyoshi H, Suzuki H, Kawanaka K, Hayashi T. AMPK is indispensable for overload-induced muscle glucose uptake and glycogenesis but dispensable for inducing hypertrophy in mice. FASEB J, 2021, 35(4):e21459. |
[41] |
Liu XH, Bauman WA, Cardozo CP. Myostatin inhibits glucose uptake via suppression of insulin-dependent and -independent signaling pathways in myoblasts. Physiol Rep, 2018, 6(17):e13837.
doi: 10.14814/phy2.13837 |
[42] |
Thomson DM. The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration. Int J Mol Sci, 2018, 19(10):3125.
doi: 10.3390/ijms19103125 |
[43] |
Chen JF, Mandel EM, Thomson JM, Wu QL, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38(2):228-233.
doi: 10.1038/ng1725 |
[44] |
Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA, Olson EN. Selective repression of MEF2 activity by PKA- dependent proteolysis of HDAC4. J Cell Biol, 2011, 195(3):403-415.
doi: 10.1083/jcb.201105063 |
[45] |
Lu LN, Zhou L, Chen EZ, Sun K, Jiang PY, Wang LJ, Su XX, Sun H, Wang HT. A novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One, 2012, 7(2):e27596.
doi: 10.1371/journal.pone.0027596 |
[46] |
Tang ZL, Liang RY, Zhao SP, Wang RQ, Huang RH, Li K. CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci, 2014, 10(4):377-385.
doi: 10.7150/ijbs.8015 |
[47] |
Hong JS, Noh SH, Lee JS, Kim JM, Hong KC, Lee YS. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene, 2012, 506(1):211-216.
doi: 10.1016/j.gene.2012.06.050 |
[48] |
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. Asian-Australas J Anim Sci, 2020, 33(12):1873-1884.
doi: 10.5713/ajas.20.0324 |
[49] |
Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH, Zhao SH. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis, 2013, 4(11):e934.
doi: 10.1038/cddis.2013.462 |
[50] |
Wang YJ, Ma JD, Qiu WL, Zhang JW, Feng SY, Zhou XK, Wang X, Jin L, Long K, Liu LY, Xiao WH, Tang QZ, Zhu L, Jiang YZ, Li XW, Li MZ. Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p co-mediated Akt/ mTOR/S6K signaling pathway. Int J Mol Sci, 2018, 19(9):2837.
doi: 10.3390/ijms19092837 |
[51] |
Cui S, Li L, Mubarokah SN, Meech R. Wnt/β-catenin signaling induces the myomiRs miR-133b and miR-206 to suppress Pax7 and induce the myogenic differentiation program. J Cell Biochem, 2019, 120(8):12740-12751.
doi: 10.1002/jcb.v120.8 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号