Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (8): 747-757.doi: 10.16288/j.yczz.21-208
• Review • Previous Articles Next Articles
Liwen Wu(), Jie Zeng, Yunxin Xue, Xilin Zhao(
)
Received:
2021-06-10
Revised:
2021-07-14
Online:
2021-08-20
Published:
2021-07-23
Contact:
Zhao Xilin
E-mail:wlw6621@126.com;zhaox5@xmu.edu.cn
Supported by:
Liwen Wu, Jie Zeng, Yunxin Xue, Xilin Zhao. Progress on the function and regulatory mechanisms of bacterial Cpx signal transduction system[J]. Hereditas(Beijing), 2021, 43(8): 747-757.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
细菌种类 | 抗生素耐药性 | 啊啊啊啊 |
---|---|---|
大肠杆菌(Escherichia coli) | 氨基糖苷类、β-内酰胺类、杀菌肽聚糖、羟基脲、阳离子抗菌肽、细胞透膜肽(Cell penetrating peptide, CPP) | [13,14,64~67] |
肠出血性大肠杆菌O157:H7 (Enterohaemorrhagic Escherichia coli O157:H7) | 磷霉素 | [68] |
肺炎克雷伯菌(Klebsiella pneumoniae) | β-内酰胺类、氯霉素、利福平、四环素、链霉素、红霉素 | [63,69] |
鼠伤寒沙门氏菌(Salmonella typhimurium) | 氨基糖苷类、β-内酰胺类 | [70,71] |
产气克雷伯氏菌(Klebsiella aerogenes) | β-内酰胺类 | [12,72~74] |
产气肠杆菌(Enterobacter aerogenes) | ||
铜绿假单胞菌(Pseudomonas aeruginosa) | ||
霍乱弧菌(Vibrio cholerae) | ||
副猪嗜血杆菌(Haemophilus parasuis) | 大环内酯类 | [75] |
[1] | Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2010, 2(5):a000414. |
[2] |
Ruiz N, Silhavy TJ. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol, 2005, 8(2):122-126.
doi: 10.1016/j.mib.2005.02.013 |
[3] |
Hunke S, Keller R, Müller VS. Signal integration by the Cpx-envelope stress system. FEMS Microbiol Lett, 2012, 326(1):12-22.
doi: 10.1111/j.1574-6968.2011.02436.x |
[4] |
McEwen J, Silverman P. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc Natl Acad Sci USA, 1980, 77(1):513-517.
doi: 10.1073/pnas.77.1.513 |
[5] |
Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA, 1986, 83(20):7850-7854.
doi: 10.1073/pnas.83.20.7850 |
[6] |
Dong J, Iuchi S, Kwan HS, Lu Z, Lin EC. The deduced amino-acid sequence of the clonedcpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia Coli. Gene, 1993, 136(1-2):227-230.
pmid: 8294007 |
[7] |
Cosma CL, Danese PN, Carlson JH, Silhavy TJ, Snyder WB. Mutational activation of the Cpx signal transduction pathway ofEscherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. Mol Microbiol, 1995, 18(3):491-505.
pmid: 8748033 |
[8] |
Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol, 1995, 177(15):4216-4223.
pmid: 7635808 |
[9] |
Nakayama S, Watanabe H. Involvement ofcpxA, a sensor of a two-component regulatory system, in the pH- dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol, 1995, 177(17):5062-5069.
pmid: 7665485 |
[10] |
Lee LJ, Barrett JA, Poole RK. Genome-wide transcriptional response of chemostat-culturedEscherichia coli to zinc. J Bacteriol, 2005, 187(3):1124-1134.
doi: 10.1128/JB.187.3.1124-1134.2005 |
[11] |
Yamamoto K, Ishihama A. Characterization of copper- inducible promoters regulated by CpxA/CpxR inEscherichia coli. Biosci Biotechnol Biochem, 2006, 70(7):1688-1695.
doi: 10.1271/bbb.60024 |
[12] | Masi M, Pinet E, Pagès JM. Complex response of the CpxAR two-component system to β-Lactams on antibiotic resistance and envelope homeostasis inEnterobacteriaceae. Antimicrob Agents Chemother, 2020, 64(6):e00291-e002920. |
[13] |
Kashyap DR, Kuzma M, Kowalczyk DA, Gupta D, Dziarski R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol Microbiol, 2017, 105(5):755-776.
doi: 10.1111/mmi.13733 pmid: 28621879 |
[14] |
Raivio TL, Leblanc SKD, Price NL. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol, 2013, 195(12):2755-2767.
doi: 10.1128/JB.00105-13 pmid: 23564175 |
[15] |
Buelow DR, Raivio TL. Three (and more) component regulatory systems-auxiliary regulators of bacterial histidine kinases. Mol Microbiol, 2010, 75(3):547-566.
doi: 10.1111/j.1365-2958.2009.06982.x |
[16] |
Raivio TL, Silhavy TJ. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol, 1997, 179(24):7724-7733.
pmid: 9401031 |
[17] |
Yamamoto K, Ishihama A. Transcriptional response ofEscherichia coli to external copper. Mol Microbiol, 2005, 56(1):215-227.
doi: 10.1111/j.1365-2958.2005.04532.x |
[18] |
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol, 2008, 631:80-110.
doi: 10.1007/978-0-387-78885-2_6 pmid: 18792683 |
[19] |
Pogliano J, Lynch AS, Belin D, Lin EC, Beckwith J. Regulation ofEscherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev, 1997, 11(9):1169-1182.
doi: 10.1101/gad.11.9.1169 |
[20] |
Missiakas D, Raina S. Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments ofE. coli: role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J, 1997, 16(7):1670-1685.
pmid: 9130712 |
[21] |
Danese PN, Silhavy TJ. Cpx P, a stress-combative member of the Cpx regulon. J Bacteriol, 1998, 180(4):831-839.
pmid: 9473036 |
[22] |
Raivio TL, Popkin DL, Silhavy TJ. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol, 1999, 181(17):5263-5272.
pmid: 10464196 |
[23] |
Xu Y, Zhao Z, Tong WH, Ding YM, Liu B, Shi YX, Wang JC, Sun SM, Liu M, Wang YH, Qi QS, Xian M, Zhao G. An acid-tolerance response system protecting exponentially growingEscherichia coli. Nat Commun, 2020, 11(1):1496.
doi: 10.1038/s41467-020-15350-5 |
[24] |
Zhou XH, Keller R, Volkmer R, Krauss N, Scheerer P, Hunke S. Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein. J Biol Chem, 2011, 286(11):9805-9814.
doi: 10.1074/jbc.M110.194092 |
[25] |
Otto K, Silhavy TJ. Surface sensing and adhesion ofEscherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci USA, 2002, 99(4):2287-2292.
doi: 10.1073/pnas.042521699 |
[26] |
Clarke EJ, Voigt CA. Characterization of combinatorial patterns generated by multiple two-component sensors inE. coli that respond to many stimuli. Biotechnol Bioeng, 2011, 108(3):666-675.
doi: 10.1002/bit.22966 |
[27] |
Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, Keasling JD. Functional genomic study of exogenous n-butanol stress inEscherichia coli. Appl Environ Microbiol, 2010, 76(6):1935-1945.
doi: 10.1128/AEM.02323-09 |
[28] | Kumar A, Sperandio V. Indole signaling at the host-microbiota-pathogen interface. mBio, 2019, 10(3):e01031-e010319. |
[29] | Wood TK, Lee J. Precedence for the role of indole with pathogens. mBio, 2019, 10(4):e01599-e015919. |
[30] |
Kashyap DR, Wang MH, Liu LH, Boons GJ, Gupta D, Dziarski R. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med, 2011, 17(6):676-683.
doi: 10.1038/nm.2357 pmid: 21602801 |
[31] |
Jones CH, Danese PN, Pinkner JS, Silhavy TJ, Hultgren SJ. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J, 1997, 16(21):6394-6406.
pmid: 9351822 |
[32] |
Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenicEscherichia coli. J Bacteriol, 2005, 187(2):672-686.
pmid: 15629938 |
[33] |
Itou A, Matsumoto K, Hara H. Activation of the Cpx phosphorelay signal transduction system in acidic phospholipid-deficientpgsA mutant cells of Escherichia coli. Biochem Biophys Res Commun, 2012, 421(2):296-300.
doi: 10.1016/j.bbrc.2012.04.003 |
[34] |
Rinker SD, Trombley MP, Gu XP, Fortney KR, Bauer ME. Deletion ofmtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect Immun, 2011, 79(6):2324-2334.
doi: 10.1128/IAI.01316-10 |
[35] |
Wolfe AJ, Parikh N, Lima BP, Zemaitaitis B. Signal integration by the two-component signal transduction response regulator CpxR. J Bacteriol, 2008, 190(7):2314-2322.
doi: 10.1128/JB.01906-07 pmid: 18223085 |
[36] |
Strozen TG, Langen GR, Howard SP. Adenylate cyclase mutations rescue thedegP temperature-sensitive phenotype and induce the sigma E and Cpx extracytoplasmic stress regulons in Escherichia coli. J Bacteriol, 2005, 187(18):6309-6316.
doi: 10.1128/JB.187.18.6309-6316.2005 |
[37] |
Price NL, Raivio TL. Characterization of the Cpx regulon inEscherichia coli strain MC4100. J Bacteriol, 2009, 191(6):1798-1815.
doi: 10.1128/JB.00798-08 |
[38] |
Rosner JL, Martin RG. Reduction of cellular stress by TolC-dependent efflux pumps inEscherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants. J Bacteriol, 2013, 195(5):1042-1050.
doi: 10.1128/JB.01996-12 pmid: 23264577 |
[39] |
Hirano Y, Hossain MM, Takeda K, Tokuda H, Miki K. Structural studies of the Cpx pathway activator NlpE on the outer membrane ofEscherichia coli. Structure, 2007, 15(8):963-976.
pmid: 17698001 |
[40] | Delhaye A, Laloux G, Collet JF. The lipoprotein NlpE is a Cpx sensor that serves as a sentinel for protein sorting and folding defects in theEscherichia coli envelope. J Bacteriol, 2019, 201(10):e00611-e00618. |
[41] |
Jaswal K, Shrivastava M, Roy D, Agrawal S, Chaba R. Metabolism of long-chain fatty acids affects disulfide bond formation inEscherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genet, 2020, 16(10):e1009081.
doi: 10.1371/journal.pgen.1009081 |
[42] |
Tschauner K, Hörnschemeyer P, Müller VS, Hunke S. Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition inE. coli. PloS One, 2014, 9(9):e107383.
doi: 10.1371/journal.pone.0107383 |
[43] |
Thede GL, Arthur DC, Edwards RA, Buelow DR, Wong JL, Raivio TL, Glover JNM. Structure of the periplasmic stress response protein CpxP. J Bacteriol, 2011, 193(9):2149-2157.
doi: 10.1128/JB.01296-10 pmid: 21317318 |
[44] |
Kwon E, Kim DY, Ngo TD, Gross CA, Gross JD, Kim KK. The crystal structure of the periplasmic domain of Vibrio parahaemolyticus CpxA. Protein Sci, 2012, 21(9):1334-1343.
doi: 10.1002/pro.2120 |
[45] |
Quan S, Koldewey P, Tapley T, Kirsch N, Ruane KM, Pfizenmaier J, Shi R, Hofmann S, Foit L, Ren GP, Jakob U, Xu ZH, Cygler M, Bardwell JCA. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol, 2011, 18(3):262-269.
doi: 10.1038/nsmb.2016 pmid: 21317898 |
[46] |
Keller RF, Hunke S. Misfolded maltose binding protein MalE219 induces the CpxRA envelope stress response by stimulating phosphoryl transfer from CpxA to CpxR. Res Microbiol, 2009, 160(6):396-400.
doi: 10.1016/j.resmic.2009.07.002 |
[47] |
Dombek KM, Ingram LO. Effects of ethanol on theEscherichia coli plasma membrane. J Bacteriol, 1984, 157(1):233-239.
pmid: 6360997 |
[48] |
Akiyama Y. Quality control of cytoplasmic membrane proteins inEscherichia coli. J Biochem, 2009, 146(4):449-454.
doi: 10.1093/jb/mvp071 |
[49] |
Kumar A, Russell RM, Pifer R, Menezes-Garcia Z, Cuesta S, Narayanan S, MacMillan JB, Sperandio V. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe, 2020, 28(1): 41-53.e48.
doi: S1931-3128(20)30286-9 pmid: 32521224 |
[50] |
Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta, 2014, 1843(8):1529-1541.
doi: 10.1016/j.bbamcr.2013.10.018 pmid: 24184210 |
[51] | Lima BP, Lennon CW, Ross W, Gourse RL, Wolfe AJ. In vitro evidence that RNA Polymerase acetylation and acetyl phosphate-dependent CpxR phosphorylation affect cpxP transcription regulation. FEMS Microbiol Lett, 2016, 363(5): fnw011. |
[52] |
Cao JN, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E-coli O157 : H7. Mol Microbiol, 2007, 65(4):857-875.
doi: 10.1111/mmi.2007.65.issue-4 |
[53] | De Wulf P, McGuire AM, Liu XQ, Lin ECC. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem, 2002, 277(29):26652-26661. |
[54] |
Gangaiah D, Zhang XJ, Fortney KR, Baker B, Liu YL, Munson RS, Spinola SM. Activation of CpxRA in Haemophilus ducreyi primarily inhibits the expression of its targets, including major virulence determinants. J Bacteriol, 2013, 195(15):3486-3502.
doi: 10.1128/JB.00372-13 |
[55] |
Acosta N, Pukatzki S, Raivio TL. TheVibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J Bacteriol, 2015, 197(2):262-276.
doi: 10.1128/JB.01957-14 |
[56] |
Surmann K, Ćudić E, Hammer E, Hunke S. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability inEscherichia coli. MicrobiologyOpen, 2016, 5(4):582-596.
doi: 10.1002/mbo3.2016.5.issue-4 |
[57] |
Dudin O, Geiselmann J, Ogasawara H, Ishihama A, Lacour S. Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators ofEscherichia coli biofilm formation. J Bacteriol, 2014, 196(3):707-715.
doi: 10.1128/JB.00938-13 |
[58] | De la Cruz MA, Perez-Morales D, Palacios IJ, Fernández-Mora M, Calva E, Bustamante VH. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD. Front Microbiol, 2015, 6:807. |
[59] |
Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes inEscherichia coli. Mol Microbiol, 2005, 55(4):1113-1126.
doi: 10.1111/j.1365-2958.2004.04449.x |
[60] |
Gerken H, Charlson ES, Cicirelli EM, Kenney LJ, Misra R. MzrA: a novel modulator of the EnvZ/OmpR two- component regulon. Mol Microbiol, 2009, 72(6):1408-1422.
doi: 10.1111/j.1365-2958.2009.06728.x pmid: 19432797 |
[61] |
Bryan LE, Van Den Elzen HM. Effects of membrane- energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother, 1977, 12(2):163-177.
pmid: 143238 |
[62] |
Thorbjarnardóttir SH, Magnúsdóttir RA, Eggertsson G. Mutations determining generalized resistance to aminoglycoside antibiotics inEscherichia coli. Mol Gen Genet, 1978, 161(1):89-98.
doi: 10.1007/BF00266619 |
[63] |
Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance inKlebsiella pneumoniae NTUH-K2044. PloS One, 2012, 7(4):e33777.
doi: 10.1371/journal.pone.0033777 |
[64] |
Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol, 2013, 195(9):1869-1874.
doi: 10.1128/JB.02197-12 pmid: 23335416 |
[65] | Moreau PL. Protective role of the RpoE (σE) and Cpx envelope stress responses against gentamicin killing of nongrowing Escherichia coli incubated under aerobic, phosphate starvation conditions. FEMS Microbiol Lett, 2014, 357(2):151-156. |
[66] |
Weatherspoon-Griffin N, Yang DZ, Kong W, Hua ZC, Shi YX. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitateEscherichia coli resistance to a model antimicrobial peptide. J Biol Chem, 2014, 289(47):32571-32582.
doi: 10.1074/jbc.M114.565762 pmid: 25294881 |
[67] |
Frimodt-Møller J, Koulouktsis A, Charbon G, Otterlei M, Nielsen PE, Løbner-Olesen A. Activation of the Cpx- envelope stress response system promotes tolerance to antibacterials delivered by arginine-rich peptides and aminoglycosides in Escherichia coli. bioRxiv, 2020, doi: 10.1101/2020.08.31.274910.
doi: 10.1101/2020.08.31.274910 |
[68] |
Kurabayashi K, Hirakawa Y, Tanimoto K, Tomita H, Hirakawa H. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J Bacteriol, 2014, 196(2):248-256.
doi: 10.1128/JB.01151-13 pmid: 24163343 |
[69] |
Srinivasan VB, Rajamohan G. KpnEF, a new member of theKlebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad- spectrum antimicrobial resistance. Antimicrob Agents Chemother, 2013, 57(9):4449-4462.
doi: 10.1128/AAC.02284-12 pmid: 23836167 |
[70] |
Jing WX, Liu J, Wu SS, Li XR, Liu YS. Role ofcpxA mutations in the resistance to aminoglycosides and β-Lactams in Salmonella enterica serovar Typhimurium. Front Microbiol, 2021, 12:604079.
doi: 10.3389/fmicb.2021.604079 |
[71] |
Huang H, Sun YW, Yuan L, Pan YS, Gao YL, Ma CH, Hu GZ. Regulation of the two-component regulator CpxR on aminoglycosides and β-lactams resistance inSalmonella enterica serovar Typhimurium. Front Microbiol, 2016, 7:604.
doi: 10.3389/fmicb.2016.00604 pmid: 27199934 |
[72] |
Philippe N, Maigre L, Santini S, Pinet E, Claverie JM, Davin-Régli AV, Pagès JM, Masi M. In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PloS One, 2015, 10(9):e0138828.
doi: 10.1371/journal.pone.0138828 |
[73] |
Yakhnina AA, McManus HR, Bernhardt TG. The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol Microbiol, 2015, 97(5):957-973.
doi: 10.1111/mmi.2015.97.issue-5 |
[74] |
Taylor DL, Bina XR, Slamti L, Waldor MK, Bina JE. Reciprocal regulation of resistance-nodulation-division efflux systems and the Cpx two-component system inVibrio cholerae. Infect Immun, 2014, 82(7):2980-2991.
doi: 10.1128/IAI.00025-14 pmid: 24799626 |
[75] |
Cao Q, Feng FF, Wang H, Xu XJ, Chen HC, Cai XW, Wang XR. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance. Microbiol Res, 2018, 206:177-185.
doi: S0944-5013(17)30414-7 pmid: 29146255 |
[76] |
Nishino K, Yamasaki S, Hayashi-Nishino M, Yamaguchi A. Effect of NlpE overproduction on multidrug resistance inEscherichia coli. Antimicrob Agents Chemother, 2010, 54(5):2239-2243.
doi: 10.1128/AAC.01677-09 |
[77] |
Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porinsompF and ompC. J Bacteriol, 2005, 187(16):5723-5731.
pmid: 16077119 |
[78] |
Weatherspoon-Griffin N, Zhao G, Kong W, Kong Y, Morigen, Andrews-Polymenis H, McClelland M, Shi YX. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem, 2011, 286(7):5529-5539.
doi: 10.1074/jbc.M110.200352 pmid: 21149452 |
[79] |
Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death inEscherichia coli. Mol Cell, 2009, 36(5):845-860.
doi: 10.1016/j.molcel.2009.11.024 pmid: 20005847 |
[80] |
Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5):797-810.
pmid: 17803904 |
[81] |
Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two- component system activation trigger antibiotic-mediated cell death. Cell, 2008, 135(4):679-690.
doi: 10.1016/j.cell.2008.09.038 pmid: 19013277 |
[82] | Song Y, Liu YL, Qu YL, Guo JY, Zheng JD, Wang XH. Cpx system on bacterial lethal stress. J Harbin Med Univ, 2017, 51(1):13-16. |
宋玉, 刘远莉, 曲艺林, 郭君玉, 郑嘉东, 王秀宏. Cpx系统对细菌致死性应激的影响. 哈尔滨医科大学学报, 2017, 51(1):13-16. | |
[83] |
Bernal-Cabas M, Ayala JA, Raivio TL. The Cpx envelope stress response modifies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel protein YgaU. J Bacteriol, 2015, 197(3):603-614.
doi: 10.1128/JB.02449-14 pmid: 25422305 |
[84] |
Siryaporn A, Goulian M. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems inE. coli, Mol Microbiol, 2008, 70(2):494-506.
doi: 10.1111/j.1365-2958.2008.06426.x pmid: 18761686 |
[85] |
Matsuda K, Chaudhari AA, Lee JH. Evaluation of safety and protection efficacy oncpxR and lon deleted mutant of Salmonella Gallinarum as a live vaccine candidate for fowl typhoid. Vaccine, 2011, 29(4):668-674.
doi: 10.1016/j.vaccine.2010.11.039 pmid: 21115058 |
[1] | Longxiang Xie, Zhaoxiao Yu, Siyao Guo, Ping Li, Abualgasim Elgaili Abdalla, Jianping Xie. The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance [J]. HEREDITAS(Beijing), 2015, 37(8): 793-800. |
[2] | Yuejin Zhang, Qingli Chang, Qian Wang, Junwan Lu, Huan Wang, Peizhen Li, Jun Ying, Qiyu Bao, Yunliang Hu. Structure and function of class 1 integron in clinical isolates of Klebsiella pneumoniae [J]. HEREDITAS(Beijing), 2014, 36(6): 603-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号