Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (6): 514-525.doi: 10.16288/j.yczz.23-022
• Research Article • Previous Articles Next Articles
Xiangjiang Lv1(), Jing Guo2(
), Ge Lin1,2(
)
Received:
2023-02-01
Revised:
2023-03-30
Online:
2023-06-20
Published:
2023-04-21
Contact:
Guo Jing,Lin Ge
E-mail:lvxiangjiang@163.com;linggf@hotmail.com;815457238@qq.com
Supported by:
Xiangjiang Lv, Jing Guo, Ge Lin. Novel mutations in TRIP13 lead to female infertility with oocyte maturation arrest[J]. Hereditas(Beijing), 2023, 45(6): 514-525.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Overview of the TRIP13 variants observed in the three families"
家族编号 | 突变位点的物理位置 | 外显子 | cDNA的变化 | 氨基酸的变化 | 突变类型 | 基因型 | gnomAD |
---|---|---|---|---|---|---|---|
1 | Chr5:908569 | 9 | c.859A>G | p.Ile287Val | 错义突变 | 纯合 | 0 |
2 | Chr5:893190 | 1 | c.77A>G | p.His26Arg | 错义突变 | 纯合 | 0 |
3 | Chr5:900629 | 4 | c.409G>A | p.Asp137Asn | 错义突变 | 复合杂合 | 0 |
Chr5:916035 | 12 | c.1150A>G | p.Ser384Gly | 错义突变 | 复合杂合 | 0 |
Table 3
Prediction of the pathogenicity of TRIP13 variants observed in the three families"
家族编号 | 突变位点 | 变异评级(ACMG分级)* | REVEL | PolyPhen2 | Mutation Taste |
---|---|---|---|---|---|
1 | c.859A>G(p.Ile287Val) | 临床意义未明变异(PM1+PM2+PP3) | 0.687 | 可能致病 | 致病 |
2 | c.77A>G(p.His26Arg) | 致病(PM2+PP5+BP1+BP4) | 0.17 | 良性 | 致病 |
3 | c.409G>A(p.Asp137Asn) | 临床意义未明变异(PM2+PP3) | 0.616 | 良性 | 致病 |
c.1150A>G(p.Ser384Gly) | 临床意义未明变异(PM2+PP3) | 0.823 | 可能致病 | 致病 |
Table 4
Summary of mutant sites of TRIP13"
外显子 | cDNA的变化 | 氨基酸的变化 | 突变类型 | 基因型 | 疾病类型 | 参考文献 |
---|---|---|---|---|---|---|
- | c.673-1G>C | - | 剪接突变 | 纯合 | 肾母细胞瘤 | [ |
11 | c.1060C>T | p.Arg354* | 无义突变 | 纯合 | 肾母细胞瘤 | [ |
1 | c.77A>G | p.His26Arg | 错义突变 | 纯合 | 女性不孕症(卵母细胞成熟阻滞) | [ |
5 | c.518G>A | p.Arg173Gln | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | [ |
6 | c.592A>G | p.Ile198Val | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | [ |
8 | c.739G>A | p.Val247Met | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | [ |
10 | c.907G>A | p.Glu303Lys | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | [ |
1 | c.77A>G | p.His26Arg | 错义突变 | 复合杂合 | 女性不孕症(合子卵裂失败) | [ |
12 | c.1141G>A | p.Glu381Lys | 错义突变 | 纯合 | 女性不孕症(合子卵裂失败) | [ |
13 | c.1258A>G | p.Lys420Glu | 错义突变 | 复合杂合 | 女性不孕症(合子卵裂失败) | [ |
4 | c.409G>A | p.Asp137Asn | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | 本研究 |
9 | c.859A>G | p.Ile287Val | 错义突变 | 纯合 | 女性不孕症(卵母细胞成熟阻滞) | 本研究 |
12 | c.1150A>G | p.Ser384Gly | 错义突变 | 复合杂合 | 女性不孕症(卵母细胞成熟阻滞) | 本研究 |
[1] |
Guerri G, Maniscalchi T, Barati S, Gerli S, Di Renzo GC, Della Morte C, Marceddu G, Casadei A, Laganà AS, Sturla D, Ghezzi F, Garzon S, Unfer V, Bertelli M. Non-syndromic monogenic female infertility. Acta Biomed, 2019, 90(10-S): 68-74.
doi: 10.23750/abm.v90i10-S.8763 pmid: 31577258 |
[2] |
De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF, Gilchrist RB. Perspectives on the development and future of oocyte IVM in clinical practice. J Assist Reprod Genet, 2021, 38(6): 1265-1280.
doi: 10.1007/s10815-021-02263-5 |
[3] | Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays, 2022, 44(10): e2200007. |
[4] |
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update, 2021, 27(1): 154-189.
doi: 10.1093/humupd/dmaa034 |
[5] |
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet, 2021, 38(5): 993-1002.
doi: 10.1007/s10815-021-02196-z |
[6] |
Zhang ZH, Li B, Fu J, Li R, Diao FY, Li CH, Chen BB, Du J, Zhou Z, Mu J, Yan Z, Wu L, Liu S, Wang WJ, Zhao L, Dong J, He L, Liang XZ, Kuang YP, Sun XX, Sang Q, Wang L. Bi-allelic missense pathogenic variants in TRIP13 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet, 2020, 107(1): 15-23.
doi: S0002-9297(20)30148-8 pmid: 32473092 |
[7] |
Cao QQ, Zhao C, Wang CJ, Cai LB, Xia M, Zhang XL, Han J, Xu YY, Zhang JQ, Ling XF, Ma X, Huo R. The recurrent mutation in PATL2 inhibits its degradation thus causing female infertility characterized by oocyte maturation defect through regulation of the mos-mapk pathway. Front Cell Dev Biol, 2021, 9: 628649.
doi: 10.3389/fcell.2021.628649 |
[8] |
Christou-Kent M, Kherraf ZE, Amiri-Yekta A, Le Blévec E, Karaouzène T, Conne B, Escoffier J, Assou S, Guttin A, Lambert E, Martinez G, Boguenet M, Fourati Ben Mustapha S, Cedrin Durnerin I, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Coutton C, Thierry-Mieg N, Nef S, Bottari SP, Zouari R, Issartel JP, Ray PF, Arnoult C. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol Med, 2018, 10(5): e8515.
doi: 10.15252/emmm.201708515 |
[9] |
Feng RZ, Yan Z, Li B, Yu M, Sang Q, Tian GL, Xu Y, Chen BB, Qu RG, Sun ZG, Sun XX, Jin L, He L, Kuang YP, Cowan NJ, Wang L. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J Med Genet, 2016, 53(10): 662-71.
doi: 10.1136/jmedgenet-2016-103891 pmid: 27273344 |
[10] |
Cao TQ, Guo J, Xu Y, Lin XF, Deng WF, Cheng LZ, Zhao H, Jiang S, Gao M, Huang JJ, Xu YW. Two mutations in TUBB8 cause developmental arrest in human oocytes and early embryos. Reprod Biomed Online, 2021, 43(5): 891-898.
doi: 10.1016/j.rbmo.2021.07.020 pmid: 34509376 |
[11] |
Agarwal S, Behring M, Kim HG, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, Heslin MJ, Varambally S, Manne U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol, 2020, 14(12): 3007-3029.
doi: 10.1002/1878-0261.12821 pmid: 33037736 |
[12] |
Zhang GH, Zhu QZ, Fu G, Hou JB, Hu XS, Cao JJ, Peng W, Wang XW, Chen F, Cui HJ. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer, 2019, 121(12): 1069-1078.
doi: 10.1038/s41416-019-0633-0 |
[13] |
Ma HT, Poon RYC. TRIP 13 functions in the establishment of the spindle assembly checkpoint by replenishing O-MAD2. Cell Rep, 2018, 22(6): 1439-1450.
doi: 10.1016/j.celrep.2018.01.027 |
[14] |
Ma HT, Poon RYC. TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint. Cell Rep, 2016, 14(5): 1086-1099.
doi: S2211-1247(16)00004-8 pmid: 26832417 |
[15] |
Vader G. Pch2(TRIP13): controlling cell division through regulation of HORMA domains. Chromosoma, 2015, 124(3): 333-339.
doi: 10.1007/s00412-015-0516-y pmid: 25895724 |
[16] |
Hu HL, Zhang SP, Guo J, Meng F, Chen XQ, Gong F, Lu GX, Zheng W, Lin G. Identification of novel variants of thyroid hormone receptor interaction protein 13 that cause female infertility characterized by zygotic cleavage failure. Front Physiol, 2022, 13: 899149.
doi: 10.3389/fphys.2022.899149 |
[17] |
Lu SC, Guo MJ, Fan ZM, Chen Y, Shi XQ, Gu CY, Yang Y. Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am J Transl Res, 2019, 11(7): 4397-4410.
pmid: 31396344 |
[18] |
Yost S, de Wolf B, Hanks S, Zachariou A, Marcozzi C, Clarke M, de Voer R, Etemad B, Uijttewaal E, Ramsay E, Wylie H, Elliott A, Picton S, Smith A, Smithson S, Seal S, Ruark E, Houge G, Pines J, Kops GJPL, Rahman N. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet, 2017, 49(7): 1148-1151.
doi: 10.1038/ng.3883 pmid: 28553959 |
[19] |
Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing JC, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction, 2021, 161(2): R13-R35.
doi: 10.1530/REP-20-0422 pmid: 33170803 |
[20] |
Feng RZ, Sang Q, Kuang YP, Sun XX, Yan Z, Zhang SZ, Shi JZ, Tian GL, Luchniak A, Fukuda Y, Li B, Yu M, Chen JL, Xu Y, Guo L, Qu RG, Wang XQ, Sun ZG, Liu M, Shi HJ, Wang HY, Feng Y, Shao RJ, Chai RJ, Li QL, Xing QH, Zhang R, Nogales E, Jin L, He L, Gupta ML Jr, Cowan NJ, Wang L. Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med, 2016, 374(3): 223-232.
doi: 10.1056/NEJMoa1510791 |
[21] |
Masciarelli S, Horner K, Liu C, Park SH, Hinckley M, Hockman S, Nedachi T, Jin C, Conti M, Manganiello V. Cyclic nucleotide phosphodiesterase 3A-deficient mice as a model of female infertility. J Clin Invest, 2004, 114(2): 196-205.
doi: 10.1172/JCI21804 pmid: 15254586 |
[22] |
Oh JS, Han SJ, Conti M. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J Cell Biol, 2010, 188(2): 199-207.
doi: 10.1083/jcb.200907161 pmid: 20083600 |
[23] |
Eytan E, Wang KX, Miniowitz-Shemtov S, Sitry-Shevah D, Kaisari S, Yen TJ, Liu ST, Hershko A. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci USA, 2014, 111(33): 12019-12024.
doi: 10.1073/pnas.1412901111 pmid: 25092294 |
[24] |
Gu YJ, Desai A, Corbett KD. Evolutionary dynamics and molecular mechanisms of HORMA domain protein signaling. Annu Rev Biochem, 2022, 91: 541-569.
doi: 10.1146/annurev-biochem-090920-103246 pmid: 35041460 |
[25] |
Roig I, Dowdle JA, Toth A, de Rooij DG, Jasin M, Keeney S. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet, 2010, 6(8): e1001062.
doi: 10.1371/journal.pgen.1001062 |
[26] |
Li XCL, Schimenti JC. Mouse pachytene checkpoint 2 (trip13) is required for completing meiotic recombination but not synapsis. PLoS Genet, 2007, 3(8): e130.
doi: 10.1371/journal.pgen.0030130 pmid: 17696610 |
[27] | Zhou XY, Shu XM. TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway. Eur Rev Med Pharmacol Sci, 2019, 23(2): 522-529. |
[28] |
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - a systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol, 2022, 19(1): 60-80.
doi: 10.4274/tjod.galenos.2022.76329 pmid: 35343221 |
[1] | Yuxuan Guo, Shunping Yan, Yingxiang Wang. Recent advances in functional conservation and divergence of recombinase RAD51 and DMC1 [J]. Hereditas(Beijing), 2022, 44(5): 398-413. |
[2] | Yuanyuan Li, Lei Guo, Zhiming Han. Roles of NEK family in cell cycle regulation [J]. Hereditas(Beijing), 2021, 43(7): 642-653. |
[3] | Hui Nie, Yiwen Zhang, Jianing Li, Nannan Wang, Lan Xu. Progress on the correlation between the abnormal synaptonemal complex and infertility [J]. Hereditas(Beijing), 2021, 43(12): 1142-1148. |
[4] | Fan Li, Rongpei Yu, Dan Sun, Jihua Wang, Shenchong Li, Jiwei Ruan, Qinli Shan, Pingli Lu, Guoxian Wang. Molecular mechanisms of meiotic recombination suppression in plants [J]. Hereditas(Beijing), 2019, 41(1): 52-65. |
[5] | Yaping Liao,Chunjing Wang,Meng Liang,Xiaomei Hu,Qi Wu. Analysis of genetic characteristics and reproductive risks of balanced complex chromosome rearrangement carriers in China [J]. Hereditas(Beijing), 2017, 39(5): 396-412. |
[6] | Shanshan Yue,Laixin Xia. Identification of C(2)M interacting proteins by yeast two-hybrid screening [J]. HEREDITAS(Beijing), 2015, 37(11): 1160-1166. |
[7] | ZHANG Bao-Le GAO Dian-Shuai XU Yin-Xue. G protein-coupled receptor 3: a key factor in the regulation of the nervous system and follicle development [J]. HEREDITAS, 2013, 35(5): 578-586. |
[8] | XIE Wen-Jun, SHI Dian-Yi, CAI Ze-Xi, CHEN Xiao-Yang, JIN Wei-Wei. Organization, function and genetic controlling of synaptonemal complex [J]. HEREDITAS, 2012, 34(2): 167-176. |
[9] | DUAN Chao, YANG Qiang-Ling, WANG Liu, SHI Qiang-Hua, XU De-Xin. Correlation analysis between meiotic recombination frequencies and age in human spermatocyte [J]. HEREDITAS, 2011, 33(7): 725-730. |
[10] | CHEN Jun, LUO Wei-Xiong, LI Meng, LUO Qiong. Chromosome recombination in rice meiosis [J]. HEREDITAS, 2011, 33(6): 648-653. |
[11] | MENG Ya-Nan, MENG Li-Jun, SONG E-Juan, LIU Mei-Ling, ZHANG Xiu-Jun. Small RNA molecules and regulation of spermatogenesis [J]. HEREDITAS, 2011, 33(1): 9-16. |
[12] | WANG Bin, LIU Zhi-Yu, MIAO Long. Recent advances in the study of spermatogenesis and fer-tilization in Caenorhabditis elegans [J]. HEREDITAS, 2008, 30(6): 677-686. |
[13] | LONG Wen-Bo, LUAN Li, WANG Xing, LIU Yu-Hua, TU Sheng-Bin, KONG Fan-Lun, HE Tao. Cytogenetical comparison of restorers TP-4 and D minghui63 and maintainer D46B of autotetraploid rice [J]. HEREDITAS, 2007, 29(4): 462-470. |
[14] | ZHANG Wei, ZHANG Si-Zhong, A Zhou-Cun. Synaptonemal Complex——An Essential Role in Etiology of Idiopathic Azoospermia [J]. HEREDITAS, 2006, 28(2): 231-235. |
[15] | GAO Ling, MO Xiao Qian, LIN Yu, LI Yong Guan, CHENG Zhu Kuan. Meiotic Recombination Hotspots in Eukaryotes [J]. HEREDITAS, 2005, 27(4): 641-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号