| [1] | Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ , McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature, 2009,461(7265):747-753. | | [2] | Pecanka J, Jonker MA, Bochdanovits Z, Van AW . A powerful and efficient two-stage method for detecting gene-to- gene interactions in GWAS. Biostatistics, 2017,18(3):477-494. | | [3] | Li FG, Wang ZP, Hu G, Li H . Current status of SNPs interaction in genome-wide association syudy. Hereditas (Beijing), 2011,33(9):901-910. | | [3] | 李放歌, 王志鹏, 户国, 李辉 . 全基因组关联研究中的交互作用研究现状. 遗传, 2011,33(9):901-910. | | [4] | Li J, Malley JD, Andrew AS, Karagas MR, Moore JH . Detecting gene-gene interactions using a permutation-based random forest method. Biod Min, 2016,9(1):14-31. | | [5] | Young JH, Marcotte EM . Predictability of genetic interactions from functional gene modules. G3, 2017,7(2):617-624. | | [6] | Wang XG, Lv C, Xu Q, Liu YF . Interactions among polymorphisms of NER genes prompt the risk of transplantation rejection. Hereditas(Beijing), 2017,39(1):22-31. | | [6] | 王本刚, 吕执, 徐倩, 刘永峰 . 多NER基因多态的交互作用与移植排斥的发病风险相关. 遗传, 2017,39(1):22-31. | | [7] | Zhao JY, Zhu Y, Xiong MM . Genome-wide gene-gene interaction analysis for next-generation sequencing. Eur J Hum Genet, 2016,24(3):421-428. | | [8] | Anusha AR, Vinodchandra SS. Probabilistic neural network inferences on oligonucleotide classification based on oligo: target interaction. In: Nguyen N, Tojo S, Nguyen L, eds. Intelligent Information and Database Systems. Cham: Springer, 2017: 733-740. | | [9] | Li RW, Dudek SM, Kim D, Hall MA, Bradford Y, Peissig PL, Brilliant MH, Linneman JG , McCarty CA, Bao L, Ritchie MD. Identification of genetic interaction networks via an evolutionary algorithm evolved bayesian network. BioData Min, 2016,9:18. | | [10] | Tong DL, Boocock DJ, Dhondalay GK, Lemetre C, Ball GR . Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas. PLoS One, 2014,9(7):e102483. | | [11] | De Poswar FO, Farias LC, De Fraga CA, Bambirra W Jr, Brito-Júnior M, Sousa-Neto MD, Santos SHS, De Paula AMB , D'Angelo MFSV, Guimar?es AL. Interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. Journal of Endodontics. J Endod, 2015,41(6):877-883. | | [12] | Motsinger-Reif AA, Dudek SM, Hahn LW, Ritchie MD . Comparison of approaches for machine-learning optimization of neural networks for detec |
| [1] |
Jilong Wang, Qing Li, Tingzheng Zhan.
Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research
[J]. Hereditas(Beijing), 2024, 46(8): 589-602.
|
| [2] |
Hui Liang, Xue Wang, Jingfang Si, Yi Zhang.
Classification accuracy of machine learning algorithms for Chinese local cattle breeds using genomic markers
[J]. Hereditas(Beijing), 2024, 46(7): 530-539.
|
| [3] |
Yi Shi, Yao Yu, Yilin Lü, Hong Lü.
Design and practice of educational experiments on genetic epistasis
[J]. Hereditas(Beijing), 2024, 46(11): 958-970.
|
| [4] |
Huiyi Zheng, Huaxuan Wu, Zhiqiang Du.
Gut metagenome-derived image augmentation and deep learning improve prediction accuracy of metabolic disease classification
[J]. Hereditas(Beijing), 2024, 46(10): 886-896.
|
| [5] |
Ziyi Zhang, Qilin Wang, Junyou Zhang, Yingying Duan, Jiaxin Liu, Zhaoshuo Liu, Chunyan Li.
Machine learning applications in breast cancer survival and therapeutic outcome prediction based on multi-omic analysis
[J]. Hereditas(Beijing), 2024, 46(10): 820-832.
|
| [6] |
Dong Chen, Shujie Wang, Zhenjian Zhao, Xiang Ji, Qi Shen, Yang Yu, Shengdi Cui, Junge Wang, Ziyang Chen, Jinyong Wang, Zongyi Guo, Pingxian Wu, Guoqing Tang.
Genomic prediction of pig growth traits based on machine learning
[J]. Hereditas(Beijing), 2023, 45(10): 922-932.
|
| [7] |
Yongqiang Kong, Jinkai Liu, Jiaqi Gu, Jingyi Xu, Yunuo Zheng, Yiliang Wei, Shaoyuan Wu.
Optimization scheme of machine learning model for genetic division between northern Han, southern Han, Korean and Japanese
[J]. Hereditas(Beijing), 2022, 44(11): 1028-1043.
|
| [8] |
Haoyu Wang, Yuhan Hu, Yueyan Cao, Qiang Zhu, Yuguo Huang, Xi Li, Ji Zhang.
AI-SNPs screening based on the whole genome data and research on genetic structure differences of subcontinent populations
[J]. Hereditas(Beijing), 2021, 43(10): 938-948.
|
| [9] |
Yuzhuo Wang, Yiming Zhang, Xiaolian Dong, Xuecai Wang, Jianfu Zhu, Na Wang, Feng Jiang, Yue Chen, Qingwu Jiang, Chaowei Fu.
Modification effects of T2DM-susceptible SNPs on the reduction of blood glucose in response to lifestyle interventions
[J]. Hereditas(Beijing), 2020, 42(5): 483-492.
|
| [10] |
Yali Hu, Rui Dai, Yongxin Liu, Jingying Zhang, Bin Hu, Chengcai Chu, Huaibo Yuan, Yang Bai.
Analysis of rice root bacterial microbiota of Nipponbare and IR24
[J]. Hereditas(Beijing), 2020, 42(5): 506-518.
|
| [11] |
Qing Zhang,Jie Ping,Haoxiang Zhang,Bo Kang, ,Gangqiao Zhou.
Genetic association of MKL1 gene polymorphisms with the high-altitude adaptation
[J]. Hereditas(Beijing), 2019, 41(7): 634-643.
|
| [12] |
Zhang Guishan, Yang Yong, Zhang Lingmin, Dai Xianhua.
Application of machine learning in the CRISPR/Cas9 system
[J]. Hereditas(Beijing), 2018, 40(9): 704-723.
|
| [13] |
Zhao Xuetong, Yang Yadong, Qu Hongzhu, Fang Xiangdong.
Applications of machine learning in clinical decision support in the omic era
[J]. Hereditas(Beijing), 2018, 40(9): 693-703.
|
| [14] |
Lili Liu, Aiwei Guo, Peifu Wu, Fenfen Chen, Yajin Yang, Qin Zhang.
Regulation of VPS28 gene knockdown on the milk fat synthesis in Chinese Holstein dairy
[J]. Hereditas(Beijing), 2018, 40(12): 1092-1100.
|
| [15] |
Xian Gong, Chao Zhang, Aisa Yiliyasi, Ying Shi, Xuewei Yang, Aosiman Nuersimanguli, Yaqun Guan, Shuhua Xu.
A comparative analysis of genetic diversity of candidate genes associated with type 2 diabetes in worldwide populations
[J]. Hereditas(Beijing), 2016, 38(6): 543-559.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|