Hereditas(Beijing) ›› 2020, Vol. 42 ›› Issue (6): 599-612.doi: 10.16288/j.yczz.20-032
• Technique and Method • Previous Articles
Qin Lili1,2, Li Yijian1, Liang Zhaorui1, Dai Lei1, Li Wenhui1, Chen Chao1,3,4, Huang Yaling1, Zhang Le1,3,4, Liu Songming1,3,4, Qiu Si1,4, Ge Yuping1, Peng Wenting1,3, Lin Xinxin1,4, Zhang Xiuqing1,4, Dong Xuan1(), Li Bo1,4(
)
Received:
2020-04-10
Revised:
2020-05-15
Online:
2020-06-20
Published:
2020-05-19
Contact:
Xuan Dong,Bo Li
E-mail:dongxuan@genomics.cn;libo@genomics.cn
Supported by:
Qin Lili, Li Yijian, Liang Zhaorui, Dai Lei, Li Wenhui, Chen Chao, Huang Yaling, Zhang Le, Liu Songming, Qiu Si, Ge Yuping, Peng Wenting, Lin Xinxin, Zhang Xiuqing, Dong Xuan, Li Bo. A method of screening highly common neoantigens with immunogenicity in colorectal cancer based on public somatic mutation library[J]. Hereditas(Beijing), 2020, 42(6): 599-612.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The list of the predicted peptide candidates of CRC"
预测的新抗原表位 | 基因 | 突变位点 | 突变频率 | 新抗原突变位置 | 亲和力 (nmol/L) | EPIP分数 | 肿瘤中的 作用 |
---|---|---|---|---|---|---|---|
GLCE_V533I526-535 | GLCE | V533I | 6/321 | STIDESPIFK | 2.7 | 0.989077 | ? |
C1orf170_S418G413-421 | C1orf170 | S418G | 5/321 | SVAGPGPNK | 21.7 | 0.974471 | ? |
MUC3A_I29T28-36 | MUC3A | I29T | 6/321 | STSQVPFPR | 13.8 | 0.970609 | ? |
CCRL2_F179Y174-183 | CCRL2 | F179Y | 5/321 | ATLPEYVVYK | 4.7 | 0.968889 | ?- |
KIAA1683_M313T311-319 | KIAA1683 | M313T | 6/321 | STTTTTPPK | 7.9 | 0.964324 | ? |
KLHL40_N345S341-349 | KLHL40 | N345S | 5/321 | ASLSSQVPK | 9.4 | 0.956861 | ? |
MUC3A_S175P172-181 | MUC3A | S175P | 6/321 | STYPMTTTEK | 5.8 | 0.952998 | ? |
RNF43_I47V46-54 | RNF43 | I47V | 7/321 | AVIRVIPLK | 7.8 | 0.949232 | TSG |
SYNE2_A2395T2389-2398 | SYNE2 | A2395T | 5/321 | STQESATVEK | 28.9 | 0.946256 | ? |
TLR10_I369L367-375 | TLR10 | I369L | 5/321 | RTLQLPHLK | 13.2 | 0.945037 | ? |
ANKRD36C_N1571S1571-1579 | ANKRD36C | N1571S | 5/321 | STMEKCIEK | 6.6 | 0.94484 | ? |
IYD_F231I229-237 | IYD | F231I | 6/321 | QVIGKIILK | 21.4 | 0.940062 | ? |
SSX5_E19Q12-20 | SSX5 | E19Q | 5/321 | RVGSQIPQK | 35.7 | 0.936871 | ? |
MUC3A_S326T319-327 | MUC3A | S326T | 7/321 | TTLPTTITR | 16.1 | 0.936033 | ? |
ARHGEF11_H1427R1427-1435 | ARHGEF11 | H1427R | 5/321 | RTIEQLTLK | 10.8 | 0.933929 | ? |
CTNNB1_T41A41-49 | CTNNB1 | T41A | 6/321 | ATAPSLSGK | 6.9 | 0.932574 | 癌基因 |
LILRB5_L605F603-611 | LILRB5 | L605F | 5/321 | RSFPLTLPR | 6.9 | 0.931333 | ? |
EIF2A_T92S86-95 | EIF2A | T92S | 5/321 | ATWQPYSTSK | 12.9 | 0.931289 | ? |
TMPRSS15_P732S732-740 | TMPRSS15 | P732S | 5/321 | STDGGPFVK | 12 | 0.930946 | ? |
MUC6_P2049L2044-2053 | MUC6 | P2049L | 9/321 | GTVPPLTTLK | 16.5 | 0.917963 | ? |
TMEM185B_A42G42-51 | TMEM185B | A42G | 5/321 | GVFAPIWLWK | 5.7 | 0.904248 | ? |
UNC93A_M403T402-410 | UNC93A | M403T | 6/321 | STFLCVHVK | 4.5 | 0.903415 | ? |
MUC3A_Q31H28-36 | MUC3A | Q31H | 5/321 | SISHVPFPR | 14.1 | 0.901598 | ? |
FSIP2_R1288Q1285-1293 | FSIP2 | R1288Q | 5/321 | SSLQSQLSK | 13.8 | 0.900572 | ? |
FSIP2_T184NX | FSIP2 | T184NX | 2/321 | TTLPKFNKK | 10.2 | 0.961067 | ? |
Table 2
Top 2 TCR α and β chain pairs from two individual TCR repertoire"
抗原肽 | TCR克隆 | CDR3 序列 | TRV 基因 | J 基因 | 比例(%) |
---|---|---|---|---|---|
C1orf170_S418G413-421 | Clonotype1 | TRA: CAASGGAQKLVF | TRAV29DV5 | TRAJ54 | 53.2 |
TRA: CAGLLYNSGNTPLVF | TRAV35 | TRAJ29 | |||
TRB: CASSRDRGSNQPQHF | TRBV27 | TRBJ1-5 | |||
Clonotype2 | TRA: CAASGGAQKLVF | TRAV29DV5 | TRAJ54 | 31.6 | |
TRB: CASSRDRGSNQPQHF | TRBV27 | TRBJ1-5 | |||
KRAS_G12V8-16 | Clonotype1 | TRA: CASNDYKLSF | TRAV8-3 | TRAJ20 | 80.5 |
TRB: CASSLDGVSYEQYF | TRBV11-2 | TRBJ2-7 | |||
Clonotype2 | TRA: ? | ? | ? | 14.3 | |
TRB: CASSLDGVSYEQYF | TRBV11-2 | TRBJ2-7 |
[1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A . Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593 |
[2] |
Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE . GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology, 2016,5(10):e1227897.
doi: 10.1080/2162402X.2016.1227897 pmid: 27853651 |
[3] |
Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, Ciardiello F . Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev, 2019,76:22-32.
doi: 10.1016/j.ctrv.2019.04.003 pmid: 31079031 |
[4] |
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA . T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther, 2011,19(3):620-626.
doi: 10.1038/mt.2010.272 |
[5] |
Zhang CC, Wang Z, Yang Z, Wang ML, Li SQ, Li YY, Zhang R, Xiong ZX, Wei ZH, Shen JJ, Luo YL, Zhang QZ, Liu LM, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang XQ, Bie P, Liang HJ, Pecher G, Qian C . Phase I escalating- dose trial of CAR-T therapy targeting CEA + metastatic colorectal cancers . Mol Ther, 2017,25(5):1248-1258.
doi: 10.1016/j.ymthe.2017.03.010 pmid: 28366766 |
[6] |
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010,18(4):843-851.
doi: 10.1038/mt.2010.24 pmid: 20179677 |
[7] |
Zhou Z, Lyu XZ, Wu JC, Yang XY, Wu SS, Zhou J, Gu X, Su ZX, Chen SQ . TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection. R Soc Open Sci, 2017,4(4):170050.
doi: 10.1098/rsos.170050 pmid: 28484631 |
[8] |
Nonomura C, Otsuka M, Kondou R, Iizuka A, Miyata H, Ashizawa T, Sakura N, Yoshikawa S, Kiyohara Y, Ohshima K, Urakami K, Nagashima T, Ohnami S, Kusuhara M, Mitsuya K, Hayashi N, Nakasu Y, Mochizuki T, Yamaguchi K, Akiyama Y . Identification of a neoantigen epitope in a melanoma patient with good response to anti- PD-1 antibody therapy. Immunol Lett, 2019,208:52-59.
doi: 10.1016/j.imlet.2019.02.004 pmid: 30880120 |
[9] |
Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, Kriley IR, Rosenberg SA . T-Cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med, 2016,375(23):2255-2262.
doi: 10.1056/NEJMoa1609279 pmid: 27959684 |
[10] |
Wirth TC, Kühnel F . Neoantigen targeting-dawn of a new era in cancer immunotherapy? Front Immunol, 2017,8:1848.
doi: 10.3389/fimmu.2017.01848 pmid: 29312332 |
[11] |
Cafri G, Yossef R, Pasetto A, Deniger DC, Lu YC, Parkhurst M, Gartner JJ, Jia L, Ray S, Ngo LT, Jafferji M, Sachs A, Prickett T, Robbins PF, Rosenberg SA . Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat Commun, 2019,10(1):449.
doi: 10.1038/s41467-019-08304-z pmid: 30683863 |
[12] |
Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O . Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci, 2003,12(5):1007-1017.
doi: 10.1110/ps.0239403 pmid: 12717023 |
[13] |
Nielsen M, Andreatta M . NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med, 2016,8(1):33.
doi: 10.1186/s13073-016-0288-x pmid: 27029192 |
[14] |
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M . NetMHCpan-4.0: improved Peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol, 2017,199(9):3360-3368.
doi: 10.4049/jimmunol.1700893 pmid: 28978689 |
[15] |
Liu G, Li DL, Li Z, Qiu S, Li WH, Chao CC, Yang NB, Li HD, Cheng Z, Song X, Cheng L, Zhang XQ, Wang J, Yang HM, Ma K, Hou Y, Li B . PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience, 2017,6(5):1-11.
doi: 10.1093/gigascience/gix004 pmid: 28327916 |
[16] |
Zhang H, Lund O, Nielsen M . The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics, 2009,25(10):1293-1299.
doi: 10.1093/bioinformatics/btp137 pmid: 19297351 |
[17] |
Peters B, Sette A . Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 2005,6:132.
doi: 10.1186/1471-2105-6-132 pmid: 15927070 |
[18] |
Creaney J, Ma S, Sneddon SA, Tourigny MR, Dick IM, Leon JS, Khong A, Fisher SA, Lake RA, Lesterhuis WJ, Nowak AK, Leary S, Watson MW, Robinson BW . Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology, 2015,4(7):e1011492.
doi: 10.1080/2162402X.2015.1011492 pmid: 26140232 |
[19] | Hu WP, Li YP, Zhang XQ . MHC-I epitope presentation prediction based on transfer learning.Hereditas(Beijing), 41(11):1041-1049. |
胡伟澎, 李佑平, 张秀清 . 基于迁移学习的MHC-I型抗原表位呈递预测. 遗传, 41(11):1041-1049. | |
[20] | Hu WP, Qiu S, Li YP, Lin XX, Zhang L, Xiang HT, Han X, Chen L, Li S, Li WH, Ren Z, Hou GX, Lin ZL, Lu JL, Liu G, Li B, Lee LJ . EPIP: MHC-I epitope prediction integrating mass spectrometry derived motifs and tissue- specific expression profile. bioRxiv, 2019,567081. |
[21] |
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ Jr, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med, 2018, 10(436): eaao5931.
doi: 10.1126/scitranslmed.aao3003 pmid: 29643228 |
[22] |
Yamamiya D, Mizukoshi E, Kaji K, Terashima T, Kitahara M, Yamashita T, Arai K, Fushimi K, Honda M, Kaneko S . Immune responses of human T lymphocytes to novel hepatitis B virus-derived peptides. PLoS One, 2018,13(6):e0198264.
doi: 10.1371/journal.pone.0198264 pmid: 29856876 |
[23] |
Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H,. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc, 2006,1(3):1120-1132.
doi: 10.1038/nprot.2006.121 pmid: 17406393 |
[24] |
Kim MS, Ma JS, Yun HY, Cao Y, Kim JY, Chi V, Wang D, Woods A, Sherwood L, Caballero D, Gonzalez J, Schultz PG, Young TS, Kim CH . Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc, 2015,137(8):2832-2835.
doi: 10.1021/jacs.5b00106 pmid: 25692571 |
[25] |
Ali M, Foldvari Z, Giannakopoulou E, Böschen ML, Strønen E, Yang W, Toebes M, Schubert B, Kohlbacher O, Schumacher TN, Olweus J . Induction of neoantigen- reactive T cells from healthy donors. Nat Protoc, 2019,14(6):1926-1943.
doi: 10.1038/s41596-019-0170-6 pmid: 31101906 |
[26] |
Lancaster EM, Jablons D, Kratz JR . Applications of next-generation sequencing in eoantigen prediction and cancer vaccine development. Genet Test Mol Biomarkers, 2019,24(2):59-66.
doi: 10.1089/gtmb.2018.0211 pmid: 30907630 |
[27] |
The problem with neoantigen prediction. Nat Biotechnol, 2017,35(2):97.
doi: 10.1038/nbt.3800 pmid: 28178261 |
[28] |
Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS, Li YF, El-Gamil M, Rosenberg SA, Robbins PF, . Isolation of neoantigen- specific T cells from tumor and peripheral lymphocytes. J Clin Invest, 2015,125(10):3981-3991.
doi: 10.1172/JCI82416 pmid: 26389673 |
[29] |
Lin QY, Liu Z, Luo MJ, Zheng H, Qiao S, Han CL, Deng DQ, Fan Z, Lu YF, Zhang ZH, Luo QM . Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition. Sci China Life Sci, 2019,62(9):1168-1177.
doi: 10.1007/s11427-018-9470-9 pmid: 31016533 |
[30] |
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW . Bystander CD8 + T cells are abundant and phenotypically distinct in human tumour infiltrates . Nature, 2018,557(7706):575-579.
doi: 10.1038/s41586-018-0130-2 pmid: 29769722 |
[31] |
Whiteside SK, Snook JP, Williams MA, Weis JJ . Bystander T Cells: a balancing act of friends and foes. Trends Immunol, 2018,39(12):1021-1035.
doi: 10.1016/j.it.2018.10.003 pmid: 30413351 |
[32] |
Kim TS, Shin EC . The activation of bystander CD8 + T cells and their roles in viral infection . Exp Mol Med, 2019,51(12):1-9.
doi: 10.1038/s12276-019-0351-y pmid: 31811117 |
[1] | Yige Li, Dandan Zhang. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS [J]. Hereditas(Beijing), 2021, 43(3): 203-214. |
[2] | Na Zhao, Bao Qi, Qianli Dong, Xiaoli Wang. The applications of research progress of common wheat in teaching genetics [J]. Hereditas(Beijing), 2020, 42(9): 916-925. |
[3] | Yuling Yang, Lan Luo, Yuan Qian, Fang Yang. Cultivation of undergraduates’ self-regulated learning ability in Medical Genetics based on PAD class [J]. Hereditas(Beijing), 2020, 42(11): 1133-1139. |
[4] | Huanzi Lu,Dikan Wang,Zhi Wang. Correlation analysis of the prognosis of HPV positive oropharyngeal cancer patients with T cell infiltration and neoantigen load [J]. Hereditas(Beijing), 2019, 41(8): 725-735. |
[5] | Weipeng Hu, Youping Li, Xiuqing Zhang. MHC-I epitope presentation prediction based on transfer learning [J]. Hereditas(Beijing), 2019, 41(11): 1041-1049. |
[6] | Yuan Gu, Lei Zhang, Faxing Yu. Functions and regulations of the Hippo signaling pathway in intestinal homeostasis, regeneration and tumorigenesis [J]. Hereditas(Beijing), 2017, 39(7): 588-596. |
[7] | Zongchang Xu,Yingzhen Kong. Genome-wide identification, subcellular localization and gene expression analysis of the members of CESA gene family in common tobacco (Nicotiana tabacum L.) [J]. Hereditas(Beijing), 2017, 39(6): 512-524. |
[8] | Youwang Lu,Kunhua Wang. Research progress on genetic heterogeneity between primary and paired metastatic colorectal cancer [J]. Hereditas(Beijing), 2017, 39(6): 482-490. |
[9] | Lu Qi, Yanqing Ding. Involvement of the CREB5 regulatory network in colorectal cancer metastasis [J]. HEREDITAS(Beijing), 2014, 36(7): 679-684. |
[10] | Xia Liu, Bin Zhang, Xinguo Mao, Ang Li, Meirong Sun, Ruilian Jing. Cloning of tae-MIR156 precursor gene and sequence polymorphisms of tae-miR156 targeted TaSPL17 [J]. HEREDITAS(Beijing), 2014, 36(6): 592-602. |
[11] | WU Bi, HAN Zhong-Min, LI Zhi-Xin, XING Yong-Zhong. Discovery of QTLs increasing yield related traits in common wild rice [J]. HEREDITAS, 2012, 34(2): 215-222. |
[12] | LI Hui-Chen, FENG Hui-Yuan, ZHANG Ti-Peng, LIU Juan, MA Dong-Wang, QIN Hai, ZHOU Yi, SHU Lin. Association of mismatch repair gene polymorphism with susceptibility to sporadic colorectal cancer in Tianjin region [J]. HEREDITAS, 2010, 32(12): 1241-1246. |
[13] | QI Zong-Tai, DENG Li-Chi, HUANG Huan, DIAO Jian-Hua, ZHOU Guo-Hua. Advances in early diagnosis of colorectal cancer based on detection of RNAs in stool [J]. HEREDITAS, 2010, 32(10): 994-1002. |
[14] | LIU Ji–Hong, ZHANG Yan, CHANG Yu-Mei, LIANG Li-Qun, LU Cui-Yun, ZHANG Xiao-Feng, XU Mei-Jia, SUN Xiao-Wen. Mapping QTLs related to head length, eye diameter and eye cross of common carp (Cyprinus carpio L.) [J]. HEREDITAS, 2009, 31(5): 508-514. |
[15] | MAO Rui-Xin, LIU Fu-Jun, ZHANG Xiao-Feng, ZHANG Yan, CAO Ding-Chen, LU Cui-Yun, LIANG Li-Qun, SUN Xiao-Wen. Studies on quantitative trait loci related to activity of lactate dehydrogenase in common carp (Cyprinus carpio) [J]. HEREDITAS, 2009, 31(4): 407-411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号