Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (4): 448-455.doi: 10.16288/j.yczz.24-313
• Review • Previous Articles Next Articles
Yajie Ji1,2(), Jie Xiong2,3(
), Xianjin Qiu1, Kejian Wang2,3(
)
Received:
2024-11-01
Revised:
2025-01-06
Online:
2025-04-20
Published:
2025-02-08
Contact:
Kejian Wang
E-mail:604016897@qq.com;xiongjie@caas.cn;wangkejian@caas.cn
Supported by:
Yajie Ji, Jie Xiong, Xianjin Qiu, Kejian Wang. Progress on plant parthenogenesis: promoting the application of synthetic apomixis[J]. Hereditas(Beijing), 2025, 47(4): 448-455.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The parthenogenesis genes that have been excavated to date"
基因名称 | 物种来源 | 应用物种 | 孤雌生殖诱导效率(%) | 结实率(%) | 参考文献 |
---|---|---|---|---|---|
PsASGR-BBML | 狼尾草 | 珍珠粟 | 0~50.0 | 无 | [ |
烟草 | 0.2~27.3 | 无 | [ | ||
水稻 | 无 | 无 | [ | ||
玉米 | 无 | 无 | [ | ||
BnBBM1 | 甘蓝型油菜 | 拟南芥 | 0.1~12.2 | 无 | [ |
油菜 | 0.1 | 无 | [ | ||
番茄 | 1.4 | 无 | [ | ||
OsBBM1 | 水稻 | 水稻 | 5.8~32.5 | 无 | [ |
OsBBM4 | 水稻 | 水稻 | 3.2 | 21.1~82.6 | [ |
ZmBBM1 | 玉米 | 玉米 | 3.6~74.8 | 无 | [ |
ZmBBM2 | 玉米 | 玉米 | 0.4~3.5 | 无 | [ |
ToPAR | 蒲公英 | 蒲公英 | 7.1 | 无 | [ |
生菜 | 13.3~25.6 | 无 | [ | ||
谷子 | 1.4~10.2 | 6.6~39.4 | [ | ||
Lssex | 生菜 | 蒲公英 | 8.3 | 无 | [ |
OsWUS | 水稻 | 水稻 | 无 | 无 | [ |
[1] |
Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci, 2009, 15(2): 57-71.
pmid: 20080432 |
[2] |
Hochholdinger F, Baldauf JA. Heterosis in plants. Curr Biol, 2018, 28(18): R1089-R1092.
pmid: 30253145 |
[3] |
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot, 2013, 64(18): 5411-5428.
pmid: 24179097 |
[4] | Lewers KS, Martin SK, Hedges BR, Widrlechner MP, Palmer RG. Hybrid soybean seed production: comparison of three methods. Crop Sci, 1996, 36(6): 1560-1567. |
[5] |
Koltunow AM, Grossniklaus U. Apomixis: a developmental perspective. Annu Rev Plant Biol, 2003, 54: 547-574.
pmid: 14503003 |
[6] |
Wang KJ. Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH, 2020, 1(1): 15-20.
pmid: 36305008 |
[7] | Ye JY, Cui XF. Next-generation crop breeding methods. Mol Plant, 2019, 12(4): 470-471. |
[8] |
Hand ML, Koltunow AMG. The genetic control of apomixis: asexual seed formation. Genetics, 2014, 197(2): 441-450.
pmid: 24939990 |
[9] |
Fei XT, Shi JW, Liu YL, Niu JS, Wei AZ. The steps from sexual reproduction to apomixis. Planta, 2019, 249(6): 1715-1730.
pmid: 30963237 |
[10] |
d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. Turning meiosis into mitosis. PLoS Biol, 2009, 7(6): e1000124.
pmid: 19513101 |
[11] |
Xiong J, Hu FY, Ren J, Huang Y, Liu CL, Wang KJ. Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol, 2023, 79: 102877.
pmid: 36628906 |
[12] |
Sarkar KR, Coe EH. A genetic analysis of the origin of maternal haploids in maize. Genetics, 1966, 54(2): 453-464.
pmid: 17248321 |
[13] | 蔡得田. 水稻无融合生殖理论与实践. 长沙: 湖南科学技术出版社, 1998. |
[14] |
Pearcy M, Hardy O, Aron S. Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity (Edinb), 2006, 96(5): 377-382.
pmid: 16552429 |
[15] | Hu LX, Wang ZL. Progress on the research of apomixis related genes in plant. Hereditas (Beijing), 2008, 30(2): 155-163. |
胡龙兴, 王兆龙. 植物无融合生殖相关基因研究进展. 遗传, 2008, 30(2): 155-163. [DOI] | |
[16] | 蔡得田, 陈冬玲. 崛起的生物学科生长点——无融合生殖学. 生物工程进展, 1995, 15(3): 34-40. |
[17] | 赖来展. 作物单性(孤雌)生殖育种研究的进展. 广东农业科学, 1981, (4): 14-16. |
[18] | van Baarlen P, de Jong HJ, van Dijk PJ. Comparative cyto-embryological investigations of sexual and apomictic dandelions (Taraxacum) and their apomictic hybrids. Sex Plant Reprod, 2002, 15(1): 31-38. |
[19] |
Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell, 2010, 22(10): 3249-3267.
pmid: 21037104 |
[20] |
Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. Plant Cell, 2010, 22(2): 307-320.
pmid: 20139161 |
[21] |
Sukawa Y, Okamoto T. Cell cycle in egg cell and its progression during zygotic development in rice. Plant Reprod, 2018, 31(1): 107-116.
pmid: 29270910 |
[22] | Huang GZ, Gu MG. In vitro production of parthenogenetic seeds from the unpollinated ears of maize. Acta Genetica Sinica, 1995, 22(3): 230-238. |
黄国中, 谷明光. 玉米雌穗离体培养诱导孤雌生殖结实. 遗传学报, 1995, 22(3): 230-238. [DOI] | |
[23] | 辛淑荣, 高建伟, 颜廷进. 活体诱导植物孤雌生殖研究进展. 莱阳农学院学报, 1995, 12(2): 112-117. |
[24] | Xiang ZG, Hai Y, Kang MH, Zhao YY. Generation ways of haploid and its application in crop genetics and breeding. Journal of Henan Agricultural Sciences, 2011, 40(11): 17-21. |
相志国, 海燕, 康明辉, 赵永英. 单倍体的产生途径及其在作物遗传育种中的应用. 河南农业科学, 2011, 40(11): 17-21. | |
[25] | Liu ZZ, Song TM. The advances in the studies of gynogenetic haploidinduction through hybridization in maize. J Maize Sci, 1999, 7(2): 17-20. |
刘志增, 宋同明. 玉米杂交诱导孤雌生殖单倍体研究进展. 玉米科学, 1999, 7(2): 17-20. | |
[26] |
Conner JA, Mookkan M, Huo HQ, Chae K, Ozias-Akins P. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA, 2015, 112(36): 11205-11210.
pmid: 26305939 |
[27] |
Zhang ZF, Conner J, Guo YP, Ozias-Akins P. Haploidy in Tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes (Basel), 2020, 11(9): 1072.
pmid: 32932590 |
[28] |
Conner JA, Podio M, Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reprod, 2017, 30(1): 41-52.
pmid: 28238020 |
[29] |
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, Miki BLA, Custers JBM, van Lookeren Campagne MM. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14(8): 1737-1749.
pmid: 12172019 |
[30] |
Chen BJ, Maas L, Figueiredo D, Zhong Y, Reis R, Li MR, Horstman A, Riksen T, Weemen M, Liu H, Siemons C, Chen SJ, Angenent GC, Boutilier K. BABY BOOM regulates early embryo and endosperm development. Proc Natl Acad Sci USA, 2022, 119(25): e2201761119.
pmid: 35709319 |
[31] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565(7737): 91-95.
pmid: 30542157 |
[32] |
Wei X, Liu CL, Chen X, Lu HW, Wang J, Yang SL, Wang KJ. Synthetic apomixis with normal hybrid rice seed production. Mol Plant, 2023, 16(3): 489-492.
pmid: 36609144 |
[33] |
Chen JY, Strieder N, Krohn NG, Cyprys P, Sprunck S, Engelmann JC, Dresselhaus T. Zygotic genome activation occurs shortly after fertilization in maize. Plant Cell, 2017, 29(9): 2106-2125.
pmid: 28814645 |
[34] |
Qi XT, Gao HM, Lv RY, Mao WB, Zhu JJ, Liu CL, Mao L, Liu XH, Xie CX. CRISPR/dCas-mediated gene activation toolkit development and its application for parthenogenesis induction in maize. Plant Commun, 2023, 4(2): 100449.
pmid: 36089769 |
[35] |
Skinner DJ, Mallari MD, Zafar K, Cho MJ, Sundaresan V. Efficient parthenogenesis via egg cell expression of maize BABY BOOM1: a step toward synthetic apomixis. Plant Physiol, 2023, 193(4): 2278-2281.
pmid: 37610248 |
[36] |
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, Camp RHMOD, Radoeva T, Schauer SE, Fierens J, Jansen K, Mansveld S, Busscher M, Xiong W, Datema E, Nijbroek K, Blom EJ, Bicknell R, Catanach A, Erasmuson S, Winefield C, van Tunen AJ, Prins M, Schranz ME, van Dijk PJ. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet, 2022, 54(1): 84-93.
pmid: 34992267 |
[37] |
Huang Y, Liang YQ, Xie YY, Rao YC, Xiong J, Liu CL, Wang C, Wang XC, Qian Q, Wang KJ. Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnol J, 2024, 22(7): 1797-1799.
pmid: 38318962 |
[38] |
Lu ZF, Shao GN, Xiong JS, Jiao YQ, Wang J, Liu GF, Meng XB, Liang Y, Xiong GS, Wang YH, Li JY. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics, 2015, 42(2): 71-78.
pmid: 25697101 |
[39] |
Shao GN, Lu ZF, Xiong JS, Wang B, Jing YH, Meng XB, Liu GF, Ma HY, Liang Y, Chen F, Wang YH, Li JY, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12(8): 1090-1102.
pmid: 31048024 |
[40] |
Zuo JR, Niu QW, Frugis G, Chua NH. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30(3): 349-359.
pmid: 12000682 |
[41] |
Huang Y, Meng XB, Rao YC, Xie YY, Sun TT, Chen WQ, Wei X, Xiong J, Yu H, Li JY, Wang KJ. OsWUS-driven synthetic apomixis in hybrid rice. Plant Commun, 2024: 101136.
pmid: 39305015 |
[42] |
Vernet A, Meynard D, Lian QC, Mieulet D, Gibert O, Bissah M, Rivallan R, Autran D, Leblanc O, Meunier AC, Frouin J, Taillebois J, Shankle K, Khanday I, Mercier R, Sundaresan V, Guiderdoni E. High-frequency synthetic apomixis in hybrid rice. Nat Commun, 2022, 13(1): 7963.
pmid: 36575169 |
[43] |
Song MQ, Wang WM, Ji C, Li SN, Liu W, Hu XY, Feng AH, Ruan S, Du SY, Wang H, Dai K, Guo LB, Qian Q, Si HQ, Hu XM. Simultaneous production of high-frequency synthetic apomixis with high fertility and improved agronomic traits in hybrid rice. Mol Plant, 2024, 17(1): 4-7.
pmid: 37990497 |
[1] | Jiahua Zhu, Junnan Shen, Xudong Yi, Ru Li, He Yu, Rongrong Ding, Weijun Pang. Heterosis formation mechanism, prediction methods, and their application and prospect in pig production [J]. Hereditas(Beijing), 2024, 46(8): 627-639. |
[2] | Zhenlin Cao, Jinhong Li, Minhui Zhou, Manting Zhang, Ning Wang, Yifei Chen, Jiaxin Li, Qingsong Zhu, Wenjun Gong, Xuchen Yang, Xiaolong Fang, Jiaxian He, Meina Li. Functional study of the soybean stamen-preferentially expressed gene GmFLA22a in regulating male fertility [J]. Hereditas(Beijing), 2024, 46(4): 333-345. |
[3] | Xiangdong Liu, Jinwen Wu, Zijun Lu, Muhammad Qasim Shahid. Autotetraploid rice: challenges and opportunities [J]. Hereditas(Beijing), 2023, 45(9): 781-792. |
[4] | Ziwen Shi, Qing He, Zhuofan Zhao, Xiaowei Liu, Peng Zhang, Moju Cao. Exploration and utilization of maize male sterility resources [J]. Hereditas(Beijing), 2022, 44(2): 134-152. |
[5] | Bi Wu, Wei Hu, Yongzhong Xing. The history and prospect of rice genetic breeding in China [J]. Hereditas(Beijing), 2018, 40(10): 841-857. |
[6] | Huangwei Chu, Fuan Niu, Can Cheng, Jihua Zhou, Xinqi Wang, Xiaojin Luo, Qin Yuan, Liming Cao. Gene expression profiling of flag leaves at the booting stage in the japonica hybrid rice Huayou14 and its parental lines by microarray [J]. HEREDITAS(Beijing), 2015, 37(9): 932-938. |
[7] | YONG Hong-Jun WANG Jian-Jun ZHANG De-Gui ZHANG Xiao-Cong LI Ming-Shun BAI Li ZHANG Shi-Huang LI Xin-Hai. Characterization and potential utilization of maize populations in America region [J]. HEREDITAS, 2013, 35(6): 703-713. |
[8] | XU Chen-Lu, SUN Xiao-Mei, ZHANG Shou-Gong. Mechanism on differential gene expression and heterosis formation [J]. HEREDITAS, 2013, 35(6): 714-726. |
[9] | ZHANG Xiang-Yu, HUANG Deng-Ping, XIE Xiao-Hong. Progress on breeding for best-hybridized crossing of meat rabbits [J]. HEREDITAS, 2012, 34(4): 401-406. |
[10] | LIU Wen-Zhong. Prediction of retained heterosis and evaluation on breeding effects of composite livestock populations [J]. HEREDITAS, 2009, 31(8): 791-798. |
[11] | NI Xian-Lin, ZHANG Tao, JIANG Kai-Feng, YANG Li, YANG Qian-Hua, CAO YING-Jiang, WEN Chun-Yang, ZHENG Jia-Kui. Correlations between specific combining ability, heterosis and genetic distance in hybrid rice [J]. HEREDITAS, 2009, 31(8): 849-854. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号