Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (10): 930-937.doi: 10.16288/j.yczz.21-215
• Review • Previous Articles Next Articles
Xinyue Wang1,2,3(), Hongzhu Qu1,2,3(
), Xiangdong Fang1,2,3(
)
Received:
2021-06-18
Revised:
2021-08-31
Online:
2021-10-20
Published:
2021-10-08
Contact:
Qu Hongzhu,Fang Xiangdong
E-mail:wangxinyue2019d@big.ac.cn;quhongzhu@big.ac.cn;fangxd@big.ac.cn
Supported by:
Xinyue Wang, Hongzhu Qu, Xiangdong Fang. Omics big data and medical artificial intelligence[J]. Hereditas(Beijing), 2021, 43(10): 930-937.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The application of artificial intelligence in medicine"
应用 | 研究内容 | 方法 | 结果 | 啊啊啊啊 |
---|---|---|---|---|
影像 | 黄斑变性 | DLOVLP | 单模态纵向配准实验平均误差为54~59 µm,多模态横断面配准实验平均误差为66~69 µm | [12] |
乳腺DCE MRI | AI系统 | AI分析平均AUC从0.71提高到0.76 | [13] | |
分割脑部MRI图像 | 大容量深度卷积神经网络 | 完整区域,核心区域和增强区域的准确性分别为0.90、0.85和0.84 | [14] | |
癌症 研究 | 口腔癌诊断 | 分层深度卷积神经网络 | 准确度为94.5% | [15] |
上消化道癌诊断 | GRAIDS | 内部验证集准确性为0.955,外部验证集准确性结果为0.915~0.977,且灵敏度堪比专业内镜医师 | [16] | |
胃粘膜病变 | 卷积神经网络 | 敏感性显著高于专家组结果,准确率和特异性与专家组未有差异 | [17] | |
黑色素瘤图像 | 卷积神经网络 | CNN的灵敏度和特异性均高于专家 | [18] | |
结直肠癌转移至淋巴结风险 | 人工神经网络 | AUC=0.84 | [19] | |
前列腺活检评分 | 深度学习 | 良恶性AUC=0.990 (0.982~0.996);观察者数据集中,kappa比专家组高 | [20] | |
乳腺癌预后预测 | 基于堆叠集成的卷积神经网络 | AUC=0.93,准确度为90.2% | [21] | |
辅助 医学 | 预测术后30天死亡率 | 多路径卷积神经网络 | AUC=0.867 (0.835~0.899) | [22] |
测量视网膜血管口径 | SIVA-DLS | 与人工测量结果相关系数在0.82~0.95之间 | [23] |
[1] | 安绍维 . 多组学大数据整合分析推动人类未来的健康发展. 张江科技评论, 2019, (6):12-14. |
[2] | Yu YZ, Shi DJ, Ma JC, Zhou Z. Advances in application of artificial intelligence in medical image analysis. Chin J Med Imag Technol, 2019,35(12):1808-1812. |
俞益洲, 石德君, 马杰超, 周振. 人工智能在医学影像分析中的应用进展. 中国医学影像技术, 2019,35(12):1808-1812. | |
[3] | 李贺 . 人工智能在医学领域中的应用研究. 科技风, 2020, (17):7. |
[4] | Zhao XT, Yang YD, Qu HZ, Fang XD. Applications of machine learning in clinical decision support in the omic era. Hereditas(Beijing), 2018,40(9):693-703. |
赵学彤, 杨亚东, 渠鸿竹, 方向东. 组学时代下机器学习方法在临床决策支持中的应用. 遗传, 2018,40(9):693-703. | |
[5] | Mens MMJ, Maas SCE, Klap J, Weverling GJ, Klatser P, Brakenhoff JPJ, van Meurs JBJ, Uitterlinden AG, Ikram MA, Kavousi M, Ghanbari M. Multi-omics analysis reveals microRNAs associated with cardiometabolic traits. Front Genet, 2020,11:110. |
[6] | Yuan Y, Bao JD, Chen ZS, Villanueva AD, Wen WQ, Wang FQ, Zhao DJ, Fu XH, Cai QY, Long JR, Shu XO, Zheng DY, Moreno V, Zheng W, Lin WQ, Guo XY . Multi-omics analysis to identify susceptibility genes for colorectal cancer. Hum Mol Genet, 2021,30(5):321-330. |
[7] | Cohen JD, Li L, Wang YX, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Molin MD, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou SB, Bettegowda C, Diaz LA, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N . Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018,359(6378):926-930. |
[8] | Yang W, Shi J, Zhou Y, Liu TJ, Zhan FL, Zhang K, Liu N . Integrating proteomics and transcriptomics for the identification of potential targets in early colorectal cancer. Int J Oncol, 2019,55(2):439-450. |
[9] | Zhang BY, Yang L, Wang X, Fu DG . Identification of a survival-related signature for sarcoma patients through integrated transcriptomic and proteomic profiling analyses. Gene, 2021,764:145105. |
[10] | Han D, Li QH, Cai W, Xia YW, Ning J, Huang F. Research and application of artificial intelligence in medical imaging. Big Data, 2019,5(1):39-67. |
韩冬, 李其花, 蔡巍, 夏雨薇, 宁佳, 黄峰. 人工智能在医学影像中的研究与应用. 大数据, 2019,5(1):39-67. | |
[11] | Wang Y, Li CF. The new research progress of artificial intelligent methods in medical image processing. Chin J Med Phys, 2013,30(3):4138-4143. |
王弈, 李传富. 人工智能方法在医学图像处理中的研究新进展. 中国医学物理学杂志, 2013,30(03):4138-4143. | |
[12] | De Silva T, Chew EY, Hotaling N, Cukras CA . Deep- learning based multi-modal retinal image registration for the longitudinal analysis of patients with age-related macular degeneration. Biomed Opt Express, 2020,12(1):619-636. |
[13] | Jiang YL, Edwards AV, Newstead GM . Artificial intelligence applied to breast MRI for improved diagnosis. Radiology, 2021,298(1):38-46. |
[14] | Hoseini F, Shahbahrami A, Bayat P . An efficient implementation of deep convolutional neural networks for MRI segmentation. J Digit Imaging, 2018,31(5):738-747. |
[15] | Jeyaraj PR, Nadar ERS . Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol, 2019,145(4):829-837. |
[16] | Luo HY, Xu GL, Li CF, He LJ, Luo LN, Wang ZX, Jing BZ, Deng YS, Jin Y, Li Y, Li B, Tan WC, He CS, Seeruttun SR, Wu QB, Huang J, Huang DW, Chen B, Lin SB, Chen QM, Yuan CM, Chen HX, Pu HY, Zhou F, He Y, Xu RH . Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol, 2019,20(12):1645-1654. |
[17] | Li L, Chen YS, Shen Z, Zhang XQ, Sang JZ, Ding Y, Yang XY, Li J, Chen M, Jin CH, Chen CL, Yu CH . Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer, 2020,23(1):126-132. |
[18] | Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, Weichenthal M, Klode J, Schadendorf D, Holland-Letz T, von Kalle C, Fröhling S, Schilling B, Utikal JS. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer, 2019,119:11-17. |
[19] | Kudo SE, Ichimasa K, Villard B, Mori Y, Misawa M, Saito S, Hotta K, Saito Y, Matsuda T, Yamada K, Mitani T, Ohtsuka K, Chino A, Ide D, Imai K, Kishida Y, Nakamura K, Saiki Y, Tanaka M, Hoteya S, Yamashita S, Kinugasa Y, Fukuda M, Kudo T, Miyachi H, Ishida F, Itoh H, Oda M, Mori K. Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology, 2021, 160(4): 1075-1084.e2. |
[20] | Bulten W, Pinckaers H, van Boven H, Vink R, de Bel T, van Ginneken B, van der Laak J, Hulsbergen-van de Kaa C, Litjens G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol, 2020,21(2):233-241. |
[21] | Arya N, Saha S . Multi-modal classification for human breast cancer prognosis prediction: Proposal of deep- learning based stacked ensemble model. IEEE/ACM Trans Comput Biol Bioinform, 2020, doi: 10.1109/TCBB.2020.3018467. |
[22] | Fritz BA, Cui ZC, Zhang MH, He YJ, Chen YX, Kronzer A, Abdallah AB, King CR, Avidan MS . Deep-learning model for predicting 30-day postoperative mortality. Br J Anaesth, 2019,123(5):688-695. |
[23] | Cheung CY, Xu DJ, Cheng CY, Sabanayagam C, Tham YC, Yu M, Rim TH, Chai CY, Gopinath B, Mitchell P, Poulton R, Moffitt TE, Caspi A, Yam JC, Tham CC, Jonas JB, Wang YX, Song SJ, Burrell LM, Farouque O, Li LJ, Tan G, Ting DSW, Hsu W, Lee ML, Wong TY . A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat Biomed Eng, 2021,5(6):498-508. |
[24] | Bhinder B, Gilvary C, Madhukar NS, Elemento O . Artificial intelligence in cancer research and precision medicine. Cancer Discov, 2021,11(4):900-915. |
[25] | Hira MT, Razzaque MA, Angione C, Scrivens J, Sawan S, Sarker M . Integrated multi-omics analysis of ovarian cancer using variational autoencoders. Sci Rep, 2021,11(1):6265. |
[26] | Zhao LH, Dong QY, Luo CL, Wu Y, Bu DC, Qi XN, Luo YF, Zhao Y . DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis. Comput Struct Biotechnol J, 2021,19:2719-2725. |
[27] | Xu J, Wu P, Chen YH, Meng QF, Dawood H, Dawood H . A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data. BMC Bioinformatics, 2019,20(1):527. |
[28] | Liu FW, Li HJ, Zhang YH, Li RS, Wang ZS, Tang XY. Application of artificial intelligence in medical imaging diagnosis. Beijing Biomed Eng, 2019,38(2):206-211. |
刘丰伟, 李汉军, 张逸鹤, 李若松, 王尊升, 唐晓英. 人工智能在医学影像诊断中的应用. 北京生物医学工程, 2019,38(2):206-211. | |
[29] | 许家睿 . 人工智能在辅助医疗领域现状与未来发展趋势概述. 中国新通信, 2021,23(1):232-234. |
[30] | Zhou WL. The classification and ethical reflection of artificial intelligence medical application. Chin Med Ethic, 2020,33(7):826-830. |
周琬琳. 人工智能医学应用的分类与伦理问题反思. 中国医学伦理学, 2020,33(7):826-830. |
[1] | Yan Hao, Fumin Lei. Genetic mechanism of adaptive evolution: the example of adaptation to high altitudes [J]. Hereditas(Beijing), 2022, 44(8): 635-654. |
[2] | Changgui Lei, Xueyuan Jia, Wenjing Sun. Establish six-gene prognostic model for glioblastoma based on multi-omics data of TCGA database [J]. Hereditas(Beijing), 2021, 43(7): 665-679. |
[3] | Yuxin Guo, Xingchun Zhao. Research in forensic medicine under the view of biosafety [J]. Hereditas(Beijing), 2021, 43(10): 1003-1007. |
[4] | Guangyong Zheng, Tao Zeng, Yixue Li. Application and prospect of cutting-edge information technology in biomedical big data [J]. Hereditas(Beijing), 2021, 43(10): 924-929. |
[5] | Jing Tian, Yuzhe Wang, Shixiong Yan, Shuai Sun, Junjing Jia, Xiaoxiang Hu. Metabolomics technology and its applications in agricultural animal and plant research [J]. Hereditas(Beijing), 2020, 42(5): 452-465. |
[6] | Zhichao Mei, Zhujun Wei, Jiahui Yu, Fengdan Ji, Linan Xie. Multi-omics association analysis revealed the role and mechanism of epialleles in environmental adaptive evolution of Arabidopsis thaliana [J]. Hereditas(Beijing), 2020, 42(3): 321-331. |
[7] | Zhao Xuetong, Yang Yadong, Qu Hongzhu, Fang Xiangdong. Applications of machine learning in clinical decision support in the omic era [J]. Hereditas(Beijing), 2018, 40(9): 693-703. |
[8] | Xuexin Yu,Aili Chen,Yueying Li,Dan Liu,Qianfei Wang. Precision genomic and translational medicine for acute myeloid leukemia [J]. Hereditas(Beijing), 2018, 40(11): 988-997. |
[9] | Ying Huang,Qi Liu,Lianjiang Chi,Chengmin Shi,Zhen Wu,Min Hu,Hong Shi,Hua Chen. Application of BIG-Annotator in the genome sequencing data functional annotation and genetic diagnosis [J]. Hereditas(Beijing), 2018, 40(11): 1015-1023. |
[10] | Yang Lan,Jiangtao Hu,Yujuan Zhang. Research progress of stoichiogenomics [J]. Hereditas(Beijing), 2017, 39(2): 89-97. |
[11] | Chongfeng Xu,Ziyuan Duan. A supporting role of Chinese National Immortalized Cell Bank in life science research [J]. Hereditas(Beijing), 2017, 39(1): 75-86. |
[12] | Jiahuan Chen, Zheng Sun, Xiaojun Wang, Xiaoquan Su, Kang Ning. Research in metagenomics and its applications in translational medicine [J]. HEREDITAS(Beijing), 2015, 37(7): 645-654. |
[13] | Jiapeng Zhou, Zhiyong Pei, Yubao Chen, Runsheng Chen. Strategies of genome-wide association study based on high-throughput sequencing [J]. HEREDITAS(Beijing), 2014, 36(11): 1099-1111. |
[14] | GUO Xiao-Qiang. Discoverer of genetic principle for antibody diversity——Susumu Tonegawa [J]. HEREDITAS, 2012, 34(11): 1501-1504. |
[15] | HUANG Yan-Mei, QI Ying-Jie, XU Ji-Qing, ZHU Yun-Liang, WU Xin-Yao. Sequence Analysis of DYS522 and DYS527 Loci and Their Genetic Polymorphism Among Guangdong Han Population [J]. HEREDITAS, 2006, 28(11): 1355-1360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号