Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (12): 1100-1113.doi: 10.16288/j.yczz.23-188
• Review • Previous Articles Next Articles
Zhiyong Jiang(), Jianping Xie(
)
Received:
2023-07-10
Revised:
2023-09-12
Online:
2023-12-20
Published:
2023-09-18
Contact:
Jianping Xie
E-mail:2287834994@qq.com;georgex@swu.edu.cn
Supported by:
Zhiyong Jiang, Jianping Xie. Progress on the function of Mycobacterium T7SS (ESX) secretion system[J]. Hereditas(Beijing), 2023, 45(12): 1100-1113.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Components of the ESX system"
ESX系统亚型 | 组分 | H37Rv中编号 | 功能预测 | 缺失效应 |
---|---|---|---|---|
ESX-1 | EccA1 | Rv3868 | 调节分枝杆菌枝菌酸的合成速率 | 在原代小鼠巨噬细胞中存活所需 |
EccB1 | Rv3869 | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需 | |
EccCa | Rv3870 | 膜复合体结构蛋白 | 结核分枝杆菌H37Rv Rv3870突变株的生长和细胞毒性减弱 | |
EccCb | Rv3871 | 膜复合体结构蛋白 | 减弱了结核分枝杆菌H37Rv的毒性 | |
EccD1 | Rv3877 | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需,减弱了结核分枝杆菌H37Rv的毒性 | |
EccE1 | Rv3882c | 膜复合体结构蛋白 | 在C57BL/6J小鼠脾脏中生长所需,减弱了结核分枝杆菌H37Rv的毒性 | |
MycP1 | Rv3883c | 膜复合体结构蛋白,丝氨酸激酶 | 导致EsxA无法分泌,减弱了在BALB/c小鼠中的毒性 | |
ESX-2 | EccB2 | Rv3895c | 膜复合体结构蛋白 | |
EccC2 | Rv3894c | 膜复合体结构蛋白 | ||
EccD2 | Rv3887c | 膜复合体结构蛋白 | ||
MycP2 | Rv3886c | 膜复合体结构蛋白,丝氨酸激酶 | ||
EccE2 | Rv3885c | 膜复合体结构蛋白 | ||
EccA2 | Rv3884c | AAA+家组蛋白(多种细胞活动相关的ATP酶) | ||
ESX-3 | EccA3 | Rv0282 | AAA+家组蛋白(多种细胞活动相关的ATP酶) | |
EccB3 | Rv0283 | 膜复合体结构蛋白 | 体外无法正常生长 | |
EccC3 | Rv0284 | 膜复合体结构蛋白 | 体外无法正常生长 | |
EccD3 | Rv0290 | 膜复合体结构蛋白 | 体外无法正常生长 | |
MycP3 | Rv0291 | 膜复合体结构蛋白,丝氨酸激酶 | 体外无法正常生长 | |
EccE3 | Rv0292 | 膜复合体结构蛋白 | 体外无法正常生长 | |
ESX-4 | EccB4 | Rv3450c | 膜复合体结构蛋白 | |
MycP4 | Rv3449 | 膜复合体结构蛋白,丝氨酸激酶 | ||
EccD4 | Rv3448 | 膜复合体结构蛋白 | ||
EccC4 | Rv3447c | 膜复合体结构蛋白 | ||
ESX-5 | EccB5 | Rv1782 | 膜复合体结构蛋白 | 体外生长缺陷 |
EccC5 | Rv1783 | 膜复合体结构蛋白 | 体外生长缺陷 | |
EccD5 | Rv1795 | 膜复合体结构蛋白 | 体外生长缺陷 | |
MycP5 | Rv1796 | 膜复合体结构蛋白,丝氨酸激酶 | 体外生长缺陷 | |
EccE5 | Rv1797 | 膜复合体结构蛋白 | 体外生长缺陷 | |
EccA5 | Rv1798 | AAA+家族组蛋白(多种细胞活动相关的ATP酶) | 在胆固醇为单一碳源的培养基上无法生长 |
Table 2
The substrates of ESX"
ESX系统亚型 | 底物 | H37Rv中编号 | 功能预测 | 缺失效应 |
---|---|---|---|---|
ESX-1 | EspG1 | Rv3866 | PE/PPE的分子伴侣 | 影响PE/PPE蛋白的分泌 |
EspH | Rv3867 | Esp底物的分子伴侣 | 在斑马鱼幼体中,敲除EspH显著增加了海分枝杆菌的毒力 | |
EspE | Rv3864 | 与EspF形成异源二聚体,可能与外膜上形成的孔道相关,调控ESX-1系统底物的表达 | 影响海分枝杆菌的溶血活性,在C57BL/6J小鼠脾脏中生长所需 | |
EspF | Rv3865 | 与EspE形成异源二聚体,可能与外膜上形成的孔道相关,调控ESX-1系统底物的表达 | 影响海分枝杆菌的溶血活性,在C57BL/6J小鼠脾脏中生长所需 | |
PE35 | Rv3872 | 与PPE68形成异源二聚体 | 在C57BL/6J小鼠脾脏中生长所需 | |
PPE68 | Rv3873 | 与PE35形成异源二聚体 | 在C57BL/6J小鼠脾脏中生长所需 | |
EsxA | Rv3875 | 与EsxB形成异源二聚体,毒力因子,破裂吞噬体膜 | 细菌生长受阻以及毒性减弱 | |
EsxB | Rv3874 | 与EsxA形成异源二聚体,毒力因子,破裂吞噬体膜 | 细菌生长受阻以及毒性减弱 | |
EspI | Rv3876 | 影响分枝杆菌胞内ATP水平 | 细菌生长受阻以及毒性减弱 | |
EspJ | Rv3878 | 促进细菌在宿主体内的存活 | ||
EspL | Rv3880c | 与EsxA和EspE的分泌相关 | ||
EspK | Rv3879c | EspB的分子伴侣 | ||
EspB | Rv3881c | 被MycP1切割裂解,并且能形成7聚物的疏水圆环插入细胞膜中 | ||
ESX-2 | EspG2 | Rv3889c | PE/PPE的分子伴侣 | |
Rv3888c | Rv3888c | 保守的膜蛋白 | 体外生长缺陷 | |
PE36 | Rv3893c | 与PPE69形成异源二聚体 | ||
PPE69 | Rv3892c | 与PE36形成异源二聚体 | ||
EsxD | Rv3891c | Esx类蛋白,与EsxC形成异源二聚体 | ||
EsxC | Rv3890c | Esx类蛋白,与EsxD形成异源二聚体 | 多出现在临床 | |
ESX-3 | EspG3 | Rv0289 | PE/PPE的分子伴侣 | |
PE5 | Rv0285 | 与PPE4形成异源二聚体 | 体外生长缺陷 | |
PPE4 | Rv0286 | 与PE5形成异源二聚体 | 体外生长缺陷 | |
EsxG | Rv0287 | 影响宿主吞噬体膜的修复 | 体外生长缺陷 | |
EsxH | Rv0288 | 影响宿主吞噬体膜的修复 | 体外生长缺陷 | |
Rv3446 | Rv3446 | |||
ESX-4 | EsxU | Rv3445c | 影响了细菌在宿主体内的存活与持留 | |
EsxT | Rv3444c | 影响了细菌在宿主体内的存活与持留 | ||
ESX-5 | Rv1785 | Rv1785 | 参与中间代谢和氧化呼吸 | |
Rv1786 | Rv1786 | 铁氧还蛋白,参与中间代谢和氧化呼吸 | ||
PPE25 | Rv1787 | 与pe19形成异源二聚体 | 有助于体外生长 | |
PE18 | Rv1788 | 形成中性粒细胞胞外陷阱 | 有助于体外生长 | |
PPE26 | Rv1789 | 促进了细菌在宿主体内的存活 | 有助于体外生长 | |
PPE27 | Rv1790 | 促进了细菌在宿主体内的存活 | 有助于体外生长 | |
PE19 | Rv1791 | 促进了细菌在宿主体内的存活,与PPE25形成异源二聚体 | ||
EsxM | Rv1792 | 促进了肉芽肿的形成 | ||
EsxN | Rv1793 | 促进了肉芽肿的形成 | ||
EspG5 | Rv1794 | PE/PPE的分子伴侣 | 体外生长缺陷 |
Table 3
Antibiotic targets"
抗生素 | 抗生素英文名 | 作用机理 |
---|---|---|
新生霉素 | Novobiocin | 抑制细菌细胞壁的合成,使细菌迅速破裂溶解 |
异烟肼 | INH(isoniazid) | 抑制结核菌菌壁枝菌酸的合成,扰动电子传递链,影响ATP的产生 |
5-氯吡嗪酰胺 | X5CL_PZA | 能抑制脂肪酸合成酶I(FAS-I)的活性 |
PA824 | PA824 | 主要通过抑制细菌蛋白质合成和细胞壁枝菌酸合成的双重机制达到抑制结核分枝杆菌的效果 |
戊脉安 | Verapamil | 钙拮抗剂 |
缬氨霉素 | Valinomycin | 选择性地与K+离子结合形成脂溶性复合物,使K+容易得通过膜脂双层,呼吸链离子载体抑制剂,通过增加线粒体内膜对K+的通透性,抑制氧化磷酸化作用 |
氯法齐明 | Clofazimine | 干扰核酸代谢,抑制菌体蛋白合成 |
四环素 | Tet(Tetracycline) | 阻止氨酰基与核糖核蛋白体的结合,阻止肽链的增长和蛋白质的合成,从而抑制细菌的生长 |
阿米卡星 | Amikacin | 作用于细菌体内的核糖体,抑制细菌蛋白质合成,并破坏细菌细胞壁的完整性,致使细菌细胞膜破坏,细胞死亡 |
卷曲霉素 | Cap(capreomycin) | 干扰核糖体30S的形成,抑制细菌的生长 |
罗红霉素 | Rox(roxithromycin) | 与细菌50S核糖体亚基结合,通过阻断转肽作用和mRNA移位而抑制细菌蛋白质的合成,从而起抗菌作用 |
Table 4
Changes in Esx related genes after Mycobacterium chelonianum infection with phages"
结核分枝杆菌基因 | 龟分枝杆菌基因 | log2FC | 变化 | 结核分枝杆菌基因 | 龟分枝杆菌基因 | log2FC | 变化 |
---|---|---|---|---|---|---|---|
mas | BB28_RS22650 | 3.25 | 上调 | ppsC | BB28_RS21210 | 2.07 | 上调 |
nrp | BB28_RS03915 | 3.64 | 上调 | ppsA | BB28_RS04270 | 2.52 | 上调 |
carB | BB28_RS04260 | 3.87 | 上调 | fas | BB28_RS21245 | 2.13 | 上调 |
mbtB | BB28_RS19005 | 5.32 | 上调 | moxR2 | BB28_RS01885 | -3.18 | 下调 |
pks5 | BB28_RS06235 | 2.96 | 上调 | ligA | BB28_RS01850 | -3.13 | 下调 |
fabG1 | BB28_RS13295 | -2.32 | 下调 | cobN | BB28_RS10315 | 2.11 | 上调 |
dnaE1 | BB28_RS01845 | -4.76 | 下调 | eccB1 | BB28_RS03465 | 2.95 | 上调 |
fadD9 | BB28_RS05390 | 4.14 | 上调 |
[1] |
Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA, 2003, 100(22): 13001-13006.
pmid: 14557536 |
[2] |
Bunduc CM, Bitter W, Houben ENG. Structure and function of the mycobacterial type VII secretion systems. Annu Rev Microbiol, 2020, 74: 315-335.
doi: 10.1146/annurev-micro-012420-081657 pmid: 32660388 |
[3] |
Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol, 2016, 14(11): 677-691.
doi: 10.1038/nrmicro.2016.131 pmid: 27665717 |
[4] |
Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van Pittius NC. The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evol Biol, 2016, 16: 62.
doi: 10.1186/s12862-016-0631-2 pmid: 26979252 |
[5] |
Houben D, Demangel C, van Ingen J, Perez J, Baldeon L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol, 2012, 14(8): 1287-1298.
doi: 10.1111/j.1462-5822.2012.01799.x pmid: 22524898 |
[6] |
Lienard J, Nobs E, Lovins V, Movert E, Valfridsson C, Carlsson F. The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc Natl Acad Sci USA, 2020, 117(2): 1160-1166.
doi: 10.1073/pnas.1911646117 pmid: 31879349 |
[7] |
Osman MM, Pagan AJ, Shanahan JK, Ramakrishnan L. Mycobacterium marinum phthiocerol dimycocerosates enhance macrophage phagosomal permeabilization and membrane damage. PLoS One, 2020, 15(7): e0233252.
doi: 10.1371/journal.pone.0233252 |
[8] |
Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM. Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science, 2016, 354(6310): 347-350.
pmid: 27846571 |
[9] |
Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol, 2020, 113(1): 4-21.
doi: 10.1111/mmi.14409 pmid: 31661176 |
[10] |
Bychenko O, Skvortsova Y, Ziganshin R, Grigorov A, Aseev L, Ostrik A, Kaprelyants A, Salina EG, Azhikina T. Mycobacterium tuberculosis small RNA MTS1338 confers pathogenic properties to non-pathogenic Mycobacterium smegmatis. Microorganisms, 2021, 9(2): 414.
doi: 10.3390/microorganisms9020414 |
[11] |
Nath Y, Ray SK, Buragohain AK. Essential role of the ESX-3 associated eccD3 locus in maintaining the cell wall integrity of Mycobacterium smegmatis. Int J Med Microbiol, 2018, 308(7): 784-795.
doi: S1438-4221(18)30086-9 pmid: 30257807 |
[12] |
Wang YC, Tang YT, Lin C, Zhang JL, Mai JT, Jiang J, Gao XX, Li Y, Zhao GP, Zhang L, Liu J. Crosstalk between the ancestral type VII secretion system ESX-4 and other T7SS in Mycobacterium marinum. iScience, 2022, 25(1): 103585.
doi: 10.1016/j.isci.2021.103585 |
[13] | White DW, Elliott SR, Odean E, Bemis LT, Tischler AD. Mycobacterium tuberculosis Pst/SenX3-RegX3 regulates membrane vesicle production independently of ESX-5 activity. mBio, 2018, 9(3): e00778. |
[14] |
Ates LS, Ummels R, Commandeur S, van de Weerd R, Sparrius M, Weerdenburg E, Alber M, Kalscheuer R, Piersma SR, Abdallah AM, Abd El Ghany M, Abdel-Haleem AM, Pain A, Jiménez CR, Bitter W, Houben ENG. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet, 2015, 11(5): e1005190.
doi: 10.1371/journal.pgen.1005190 |
[15] |
Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, Sayes F, Bitter W, Brennan MJ, Leclerc C, Batoni G, Campa M, Brosch R, Esin S. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol, 2012, 83(6): 1195- 1209.
doi: 10.1111/j.1365-2958.2012.08001.x pmid: 22340629 |
[16] |
Tiwari S, Dutt TS, Chen B, Chen M, Kim J, Dai AZ, Lukose R, Shanley C, Fox A, Karger BR, Porcelli SA, Chan J, Podell BK, Obregon-Henao A, Orme IM, Jacobs WR Jr, Henao-Tamayo M.BCG-Prime and boost with Esx-5 secretion system deletion mutant leads to better protection against clinical strains of Mycobacterium tuberculosis. Vaccine, 2020, 38(45): 7156-7165.
doi: 10.1016/j.vaccine.2020.08.004 pmid: 32978002 |
[17] | Chirakos AE, Nicholson KR, Huffman A, Champion PA. Conserved ESX-1 substrates EspE and EspF are virulence factors that regulate gene expression. Infect Immun, 2020, 88(12): e00289-20. |
[18] |
Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko EV, Conrady DG, Bergeron JR, Vuckovic M, DiMaio F, Borchers CH, Yip CK, Strynadka NCJ. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure, 2015, 23(3): 571-583.
doi: S0969-2126(15)00003-9 pmid: 25684576 |
[19] |
Abdallah AM, Weerdenburg EM, Guan QT, Ummels R, Borggreve S, Adroub SA, Malas TB, Naeem R, Zhang HM, Otto TD, Bitter W, Pain A. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator. PLoS One, 2019, 14(1): e0211003.
doi: 10.1371/journal.pone.0211003 |
[20] |
Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog, 2009, 5(10): e1000507.
doi: 10.1371/journal.ppat.1000507 |
[21] |
Tuukkanen AT, Freire D, Chan S, Arbing MA, Reed RW, Evans TJ, Zenkeviciute G, Kim J, Kahng S, Sawaya MR, Chaton CT, Wilmanns M, Eisenberg D, Parret AHA, Korotkov KV. Structural variability of EspG chaperones from mycobacterial ESX-1, ESX-3, and ESX-5 type VII secretion systems. J Mol Biol, 2019, 431(2): 289-307.
doi: S0022-2836(18)30423-6 pmid: 30419243 |
[22] |
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog, 2018, 14(8): e1007247.
doi: 10.1371/journal.ppat.1007247 |
[23] |
Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W, Houben ENG, Marlovits TC. Structure and dynamics of a mycobacterial type VII secretion system. Nature, 2021, 593(7859): 445-448.
doi: 10.1038/s41586-021-03517-z |
[24] |
Poweleit N, Czudnochowski N, Nakagawa R, Trinidad DD, Murphy KC, Sassetti CM, Rosenberg OS. The structure of the endogenous ESX-3 secretion system. Elife, 2019, 8: e52983.
doi: 10.7554/eLife.52983 |
[25] |
Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R, Lugmayr W, Mayr J, Rettel M, Savitski MM, Svergun DI, Bitter W, Wilmanns M, Marlovits TC, Parret AHA, Houben ENG. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat Microbiol, 2017, 2: 17047.
doi: 10.1038/nmicrobiol.2017.47 pmid: 28394313 |
[26] |
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol, 2021, 19(9): 567-584.
doi: 10.1038/s41579-021-00560-5 pmid: 34040228 |
[27] |
Tak U, Dokland T, Niederweis M. Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun, 2021, 12(1): 394.
doi: 10.1038/s41467-020-20533-1 pmid: 33452244 |
[28] |
Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog, 2008, 4(2): e33.
doi: 10.1371/journal.ppat.0040033 |
[29] |
Cao GX, Howard ST, Zhang PP, Wang XS, Chen XL, Samten B, Pang XH. EspR, a regulator of the ESX-1 secretion system in Mycobacterium tuberculosis, is directly regulated by the two-component systems MprAB and PhoPR. Microbiology (Reading), 2015, 161(Pt 3): 477-489.
doi: 10.1099/mic.0.000023 pmid: 25536998 |
[30] |
Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem, 2004, 279(38): 40174-40184.
doi: 10.1074/jbc.M406796200 pmid: 15247240 |
[31] |
Ioerger TR, O'Malley T, Liao RL, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HI, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE 3rd, Sherman DR, Parish T, Sacchettini JC. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One, 2013, 8(9): e75245.
doi: 10.1371/journal.pone.0075245 |
[32] |
Rybniker J, Chen JM, Sala C, Hartkoorn RC, Vocat A, Benjak A, Boy-Röttger S, Zhang M, Székely R, Greff Z, Orfi L, Szabadkai I, Pató J, Kéri G, Cole ST. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe, 2014, 16(4): 538-548.
doi: 10.1016/j.chom.2014.09.008 pmid: 25299337 |
[33] |
Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLoS Genet, 2021, 17(1): e1009204.
doi: 10.1371/journal.pgen.1009204 |
[34] |
Cushman J, Freeman E, McCallister S, Schumann A, Hutchison KW, Molloy SD. Increased whiB7 expression and antibiotic resistance in Mycobacterium chelonae carrying two prophages. BMC Microbiol, 2021, 21(1): 176.
doi: 10.1186/s12866-021-02224-z pmid: 34107872 |
[35] | Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG. M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci, 2020, 134(5): jcs252973. |
[36] |
Huang TY, Irene D, Zulueta MM, Tai TJ, Lain SH, Cheng CP, Tsai PX, Lin SY, Chen ZG, Ku CC, Hsiao CD, Chyan CL, Hung SC. Structure of the complex between a heparan sulfate octasaccharide and mycobacterial heparin-binding hemagglutinin. Angew Chem Int Ed Engl, 2017, 56(15): 4192-4196.
doi: 10.1002/anie.v56.15 |
[37] |
Hinman AE, Jani C, Pringle SC, Zhan WR, Jain N, Martinot AJ, Barczak AK. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. Elife, 2021, 10: e73984.
doi: 10.7554/eLife.73984 |
[38] |
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium- containing vacuole but have opposite impact on containing the infection. PLoS Pathog, 2018, 14(12): e1007501.
doi: 10.1371/journal.ppat.1007501 |
[39] |
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, Kim SY, Lee HM, Jung M, Kim JM, Kim MH, Jo EK, Jang JC. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect, 2017, 19(1): 5-17.
doi: 10.1016/j.micinf.2016.09.001 |
[40] |
Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog, 2013, 9(10): e1003734.
doi: 10.1371/journal.ppat.1003734 |
[41] |
Heijmenberg I, Husain A, Sathkumara HD, Muruganandah V, Seifert J, Miranda-Hernandez S, Kashyap RS, Field MA, Krishnamoorthy G, Kupz A. ESX-5-targeted export of ESAT-6 in BCG combines enhanced immunogenicity & efficacy against murine tuberculosis with low virulence and reduced persistence. Vaccine, 2021, 39(50): 7265-7276.
doi: 10.1016/j.vaccine.2021.08.030 pmid: 34420788 |
[42] |
Mi YJ, Bao L, Gu DQ, Luo T, Sun CF, Yang GP. Mycobacterium tuberculosis PPE25 and PPE26 proteins expressed in Mycobacterium smegmatis modulate cytokine secretion in mouse macrophages and enhance mycobacterial survival. Res Microbiol, 2017, 168(3): 234-243.
doi: 10.1016/j.resmic.2016.06.004 |
[43] |
Yang GP, Luo T, Sun CF, Yuan JN, Peng X, Zhang CX, Zhai XQ, Bao L. PPE27 in mycobacterium smegmatis enhances mycobacterial survival and manipulates cytokine secretion in mouse macrophages. J Interferon Cytokine Res, 2017, 37(9): 421-431.
doi: 10.1089/jir.2016.0126 |
[44] |
Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao KVS. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe, 2012, 12(5): 669-681.
doi: 10.1016/j.chom.2012.09.012 pmid: 23159056 |
[45] |
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One, 2020, 15(3): e0221837.
doi: 10.1371/journal.pone.0221837 |
[46] |
Immanuel SRC, Arrieta-Ortiz ML, Ruiz RA, Pan M, Lopez Garcia de Lomana A, Peterson EJR, Baliga NS. Quantitative prediction of conditional vulnerabilities in regulatory and metabolic networks using PRIME. NPJ Syst Biol Appl, 2021, 7(1): 43.
doi: 10.1038/s41540-021-00205-6 pmid: 34873198 |
[47] |
Van den Bossche A, Varet H, Sury A, Sismeiro O, Legendre R, Coppee JY, Mathys V, Ceyssens PJ. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis (Edinb), 2019, 117: 18-23.
doi: 10.1016/j.tube.2019.05.002 |
[1] | Shasha Xiang, Jianping Xie. Progress on the non-canonical mismatch repair in Mycobacterium and its role in antibiotic resistance [J]. Hereditas(Beijing), 2023, 45(11): 1018-1027. |
[2] | Liwen Wu, Jie Zeng, Yunxin Xue, Xilin Zhao. Progress on the function and regulatory mechanisms of bacterial Cpx signal transduction system [J]. Hereditas(Beijing), 2021, 43(8): 747-757. |
[3] | Hongyuan Zheng, Lin Yan, Chao Yang, Yarong Wu, Jingliang Qin, Tongyu Hao, Dajin Yang, Yunchang Guo, Xiaoyan Pei, Tongyan Zhao, Yujun Cui. Population genomics study of Vibrio alginolyticus [J]. Hereditas(Beijing), 2021, 43(4): 350-361. |
[4] | Licheng Zhu,Junwan Lu,Jian Wang,Teng Xu,Juanhua Xu. Analyses on distribution and structure of blaCARB-2 in Klebsiella pneumoniae [J]. Hereditas(Beijing), 2018, 40(7): 593-600. |
[5] | Shengzhi Yang, Guoyan Wu, Mei Long, Wenwen Deng, Hongning Wang, Likou Zou. Antibiotic and disinfectant resistance of Salmonella isolated from egg production chains [J]. Hereditas(Beijing), 2016, 38(10): 948-956. |
[6] | Peng Cui, Tao Xu, Wenhong Zhang, Ying Zhang. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance [J]. Hereditas(Beijing), 2016, 38(10): 859-871. |
[7] | Longxiang Xie, Zhaoxiao Yu, Siyao Guo, Ping Li, Abualgasim Elgaili Abdalla, Jianping Xie. The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance [J]. HEREDITAS(Beijing), 2015, 37(8): 793-800. |
[8] | Jidong Zhou,Yudong Li. Study on an inquiry-based teaching case in genomics curriculum: identifying virulence factors of Escherichia coli by using comparative genomics [J]. HEREDITAS(Beijing), 2015, 37(2): 214-218. |
[9] | Yuejin Zhang, Qingli Chang, Qian Wang, Junwan Lu, Huan Wang, Peizhen Li, Jun Ying, Qiyu Bao, Yunliang Hu. Structure and function of class 1 integron in clinical isolates of Klebsiella pneumoniae [J]. HEREDITAS(Beijing), 2014, 36(6): 603-610. |
[10] | PENG Guang-Hua ZHENG Bin-Jiao FANG Fang WU Yue LIANG Ling-Zhi ZHENG Jing NAN Ben-Yu YU Xiao TANG Xiao-Wen ZHU Yi LU Jian-Xin CHEN Bo-Bei GUAN Min-Xin. Mitochondrial 12S rRNA A1555G mutation associated with nonsyn-dromic hearing loss in twenty-five Han Chinese pedigrees [J]. HEREDITAS, 2013, 35(1): 62-72. |
[11] | ZHENG Bin-Jiao, PENG Guang-Hua, CHEN Bo-Bei, FANG Fang, ZHENG Jing, WU Yue, LIANG Ling-Zhi, NAN Ben-Yu, TANG Xiao-Wen, ZHU Yi, LU Jian-Xin, GUAN Min-Xin. Spectrum and frequency of mitochondrial 12S rRNA variants in the Chinese subjects with nonsynrdomic hearing loss in Zhejiang Province [J]. HEREDITAS, 2012, 34(6): 695-704. |
[12] | XU Ming-Hui, TANG Zuo-Shun, ZHAO Feng-Ping, TIAN Wen-Zhong. The Germinating Characters of the Transgenic Rice Seeds in the Stress Condition of Antibiotic G418 and Their Application in Crop Breeding [J]. HEREDITAS, 2003, 25(1): 45-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号