[1] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell , 2003, 115(5): 591-602. [2] Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol , 2010, 333(4): 290-296. [3] Woodward AW, Bartel B. Auxin: regulation, action, and interaction. Ann Bot , 2005, 95(5): 707-735. [4] Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell , 2004, 16(2): 367-378. [5] Yaxley JR, Ross JJ, Sherriff LJ, Reid JB. Gibberellin biosynthesis mutations and root development in pea. Plant Physiol , 2001, 125(2): 627-633. [6] Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, Chen LY, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu XD, Fan LM, Deng XW. Coordinated regulation of Arabidopsisthaliana development by light and gibberellins. Nature , 2008, 451(7177): 475-479. [7] de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature , 2008, 451(7177): 480-484. [8] Eriksson S, Bӧhlenius H, Moritz T, Nilsson O. GA 4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell , 2006, 18(9): 2172-2181. [9] Ohkuma K, Lyon JL, Addicott FT, Smith OE. Abscisin II, an abscission-accelerating substance from young cotton fruit. Science , 1963, 142(3599): 1592-1593. [10] Liu WC, Carns HR. Isolation of abscisin, an abscission accelerating substance. Science , 1961, 134(3476): 384- 385. [11] van Steveninck RFM. Abscission-accelerators in lupins ( Lupinus luteus L . ). Nature , 1959, 183(4670): 1246-1248. [12] Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana . Planta , 2004, 219(3): 479-488. [13] Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta , 1983, 157(2): 158-165. [14] Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca 2+ -permeable channels and stomatal closure. PLoS Biol , 2006, 4(10): e327. [15] Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell , 2002, 14(12): 3089-3099. [16] Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta , 2000, 210(2): 215-221. [17] Bethke PC, Libourel IGL, Jones RL. Nitric oxide reduces seed dormancy in Arabidopsis . J Exp Bot , 2006, 57(3): 517-526. [18] Pedroso MC, Magalhaes JR, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot , 2000, 51(347): 1027-1036. [19] Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: the Ca 2+ -conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol , 2010, 154(2): 733-743. [20] Raskin I. Salicylate, a new plant hormone |