[1] | Sorrells RB. Synovioanalysis (“liquid biopsy”). J Ark Med Soc, 1974, 71(1): 59-62. | [2] | Kolostova K, Pinkas M, Jakabova A, Pospisilova E, Svobodova P, Spicka J, Cegan M, Matkowski R, Bobek V. Molecular characterization of circulating tumor cells in ovarian cancer. Am J Cancer Res, 2016, 6(5): 973-980. | [3] | TR A. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J, 1869, 14: 146-149. | [4] | Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586): 298-306. | [5] | Mostert B, Sieuwerts AM, Kraan J, Bolt-de Vries J, van der Spoel P, van Galen A, Peeters DJ, Dirix LY, Seynaeve CM, Jager A, de Jongh FE, Hamberg P, Stouthard JM, Kehrer DF, Look MP, Smid M, Gratama JW, Foekens JA, Martens JW, Sleijfer S. Gene expression profiles in circulating tumor cells to predict prognosis in metastatic breast cancer patients. Ann Oncol, 2015, 26(3): 510-516. | [6] | Nagrath S, Jack RM, Sahai V, Simeone DM. Opportunities and challenges for pancreatic circulating tumor cells. Gastroenterology, 2016, 151(3): 412-426. | [7] | Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559): 177-182. | [8] | Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer, 2011, 11(6): 426-437. | [9] | Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem, 2015, 61(1): 112-123. | [10] | Diaz LA, Jr., Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol, 2014, 32(6): 579-586. | [11] | Zill OA, Greene C, Sebisanovic D, Siew LM, Leng J, Vu M, Hendifar AE, Wang Z, Atreya CE, Kelley RK, Van Loon K, Ko AH, Tempero MA, Bivona TG, Munster PN, Talasaz A, Collisson EA. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov, 2015, 5(10): 1040-1048. | [12] | Jones S, Zhang XS, Parsons DW, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu BJ, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897): 1801-1806. | [13] | Murtaza M, Dawson SJ, Tsui DWY, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong ASC, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature, 2013, 497(7447): 108-112. | [14] | Madison BB, Jeganathan AN, Mizuno R, Winslow MM, Castells A, Cuatrecasas M, Rustgi AK. Let-7 Represses carcinogenesis and a stem cell phenotype in the intestine via regulation of hmga2. PLoS Genet, 2015, 11(8): e1005408. | [15] | Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi HD, Kim J, Huang S. SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells.. Neoplasia, 2014, 16(4): 279-290.e5. | [16] | Neel JC, Lebrun JJ. Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal, 2013, 25(7): 1556-1566. | [17] | Heegaard NHH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer, 2012, 130(6): 1378-1386. | [18] | Sharova E, Grassi A, Marcer A, Ruggero K, Pinto F, Bassi P, Zanovello P, Zattoni F, D'Agostino DM, Iafrate M, Ciminale V. A circulating miRNA assay as a first-line test for prostate cancer screening. Br J Cancer, 2016, 114(12): 1362-1366. | [19] | Aaroe J, Lindahl T, Dumeaux V, Saeb? S, Tobin D, Hagen N, Skaane P, L?nneborg A, Sharma P, B?rresen-Dale AL. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res, 2010, 12(1): R7. | [20] | Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 2015, 28(5): 666-676. | [21] | Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 2013, 11(1): 59. | [22] | Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009, 10(3): 155-159. | [23] | Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 2014, 15(1): 7-21. | [24] | Bao ZY, Zhang WT, Dong D. A potential prognostic lncRNA signature for predicting survival in patients with bladder urothelial carcinoma. Oncotarget, 2017, 8(6): 10485-10497. | [25] | Ellis BC, Molloy PL, Graham LD. CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Front Genet, 2012, 3: 270. | [26] | Gutschner T, H?mmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med, 2013, 91(7): 791-801. | [27] | Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res, 2012, 72(5): 1126-1136. | [28] | Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009, 28(2): 195-208. | [29] | Zhou YL, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol, 2012, 48(3): R45-R53. | [30] | Zhang XQ, Sun S, Lam KF, Kiang KMY, Pu JKS, Ho ASW, Lui WM, Fung CF, Wong TS, Leung GKK. A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis, 2013, 58: 123-131. | [31] | Zhou M, Guo MN, He DF, Wang XJ, Cui YQ, Yang HX, Hao DP, Sun J. A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med, 2015, 13(1): 231. | [32] | Meng J, Li P, Zhang Q, Yang ZR, Fu S. A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res, 2014, 33(1): 84. | [33] | Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, Zhang X, Fang JY. A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget, 2014, 5(8): 2230-2242. | [34] | Zhou M, Zhao HP, Wang ZZ, Cheng L, Yang L, Shi HB, Yang HX, Sun J. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res, 2015, 34(1): 102. | [35] | Zhou M, Sun YY, Sun YF, Xu WY, Zhang ZY, Zhao HQ, Zhong ZH, Sun J. Comprehensive analysis of lncRNA expression profiles reveals a novel lncRNA signature to discriminate nonequivalent outcomes in patients with ovarian cancer. Oncotarget, 2016, 7(22): 32433-32448. | [36] | Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013, 200(4): 373-383. | [37] | Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol, 2001, 166(12): 7309-7318. | [38] | Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol, 2009, 21(4): 575-581. | [39] | Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett, 2006, 107(2): 102-108. | [40] | Shao HL, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, Hochberg FH, Breakefield XO, Weissleder R, Lee H. Protein typing of circulating microvesicles allows real- time monitoring of glioblastoma therapy. Nat Med, 2012, 18(12): 1835-1840. | [41] | Brase JC, Johannes M, Schlomm T, F?lth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sültmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer, 2011, 128(3): 608-616. | [42] | Hizir MS, Balcioglu M, Rana M, Robertson NM, Yigit MV. Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl Mater Interfaces, 2014, 6(17): 14772-14778. | [43] | Endzeli?? E, Melne V, Kalni?a Z, Lietuvietis V, Rieksti?a U, Llorente A, Linē A. Diagnostic, prognostic and predictive value of cell-free miRNAs in prostate cancer: a systematic review. Mol Cancer, 2016, 15(1): 41. | [44] | Li Z, Ma YY, Wang J, Zeng XF, Li R, Kang W, Hao XK. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther, 2016, 9: 139-148. | [45] | Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Bréchot C, Paterlini-Bréchot P. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol, 2000, 156(1): 57-63. | [46] | Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, J?nicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cellsearch system. Clin Cancer Res, 2007, 13(3): 920-928. | [47] | Wang ST, Wang H, Jiao J, Chen KJ, Owens GE, Kamei KI, Sun J, Sherman DJ, Behrenbruch CP, Wu H, Tseng HR. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed, 2009, 48(47): 8970-8973. | [48] | Liu XL, Wang ST. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev, 2014, 43(8): 2385-2401. | [49] | Huang C, Yang G, Ha Q, Meng JX, Wang ST. Multifunctional "smart" particles engineered from live immunocytes: toward capture and release of cancer cells. Adv Mater, 2015, 27(2): 310-313. | [50] | Li YY, Lu QH, Liu HL, Wang JF, Zhang PC, Liang HG, Jiang L, Wang ST. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv Mater, 2015, 27(4300): 6848-6854. | [51] | Zhang FL, Jiang Y, Liu XL, Meng JX, Zhang PC, Liu HL, Yang G, Li GN, Jiang L, Wan LJ, Hu JS, Wang ST. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett, 2016, 16(1): 766-772. | [52] | Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. In: Posch A, ed. Proteomic Profiling: Methods and Protocols. New York: Springer, 2015, 1295: 179-209. | [53] | Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles, 2013, 2: 20389. | [54] | Kanchi Ravi R, Khosroheidari M, DiStefano JK. A modified precipitation method to isolate urinary exosomes. J Vis Exp, 2015, (95): 51158. | [55] | Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res, 1989, 17(7): 2503-2516. | [56] | Tang Y, Wang WY, Zheng K, Jiang LL, Zou Y, Su XY, Chen J, Zhang WY, Liu WP. EGFR mutations in non-small cell lung cancer: an audit from West China Hospital. Expert Rev Mol Diagn, 2016, 16(8): 915-919. | [57] | Wu CY, Hou LK, Ren SX, Su B, Chen G. High feasibility of liquid-based cytological samples for detection of EGFR mutations in Chinese patients with NSCLC. Asian Pac J Cancer Prev, 2014, 15(18): 7885-7889. | [58] | Beer NR, Hindson BJ, Wheeler EK, Hall SB, Rose KA, Kennedy IM, Colston BW. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem, 2007, 79(22): 8471-8475. | [59] | Lund HL, Hughesman CB, Fakhfakh K, McNeil K, Clemens S, Hocken K, Pettersson R, Karsan A, Foster LJ, Haynes C. Initial diagnosis of ALK-positive non-small-cell lung cancer based on analysis of ALK status utilizing droplet digital PCR. Anal Chem, 2016, 88(9): 4879-4885. | [60] | Shoda K, Ichikawa D, Fujita Y, Masuda K, Hiramoto H, Hamada J, Arita T, Konishi H, Komatsu S, Shiozaki A, Kakihara N, Okamoto K, Taniguchi H, Imoto I, Otsuji E. Monitoring the HER2 copy number status in circulating tumor DNA by droplet digital PCR in patients with gastric cancer. Gastric Cancer, 2017, 20(1): 126-135. | [61] | Malapelle U, Pisapia P, Sgariglia R, Vigliar E, Biglietto M, Carlomagno C, Giuffrè G, Bellevicine C, Troncone G. Less frequently mutated genes in colorectal cancer: evidences from next-generation sequencing of 653 routine cases. J Clin Pathol, 2016, 69(9): 767-771. | [62] | Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A, Mach SL, Kuang Y, Gandhi L, Kirschmeier P, English JM, Lim LP, J?nne PA, Oxnard GR. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res, 2016, 22(4): 915-922. | [63] | Chia PL, Do H, Morey A, Mitchell P, Dobrovic A, John T. Temporal changes of EGFR mutations and T790M levels in tumour and plasma DNA following AZD9291 treatment. Lung Cancer, 2016, 98: 29-32. | [64] | Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, Rodon J, Landolfi S, Prat A, Espín E, Charco R, Nuciforo P, Vivancos A, Shao WL, Tabernero J, Palmer HG. Tankyrase inhibition blocks wnt/β-catenin pathway and reverts resistance to pi3k and akt inhibitors in the treatment of colorectal cancer. Clin Cancer Res, 2016, 22(3): 644-656. | [65] | McManus DT, Patterson AH, Maxwell P, Humphreys MW, Anderson NH. Fluorescence in situ hybridisation detection of erbB2 amplification in breast cancer fine needle aspirates. Mol Pathol, 1999, 52(2): 75-77. | [66] | Goud KI, Dayakar S, Vijayalaxmi K, Babu SJ, Vijay ARP. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay. Indian J Med Res, 2012, 135(3): 312-317. | [67] | Makki JS. Diagnostic implication and clinical relevance of ancillary techniques in clinical pathology practice. Clin Med Insights Pathol, 2016, 9: 5-11. | [68] | Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 2004, 25(9): 1327-1333. | [69] | Spreafico A, Oza AM, Clarke BA, Mackay HJ, Shaw P, Butler M, Dhani NC, Lheureux S, Wilson MK, Welch S, Zhang T, Yu C, Stockley T, Siu LL, Kamel-Reid S, Bedard PL. Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecol Oncol, 2017, 144(2): 250-255. | [70] | Board RE, Wardley AM, Dixon JM, Armstrong AC, Howell S, Renshaw L, Donald E, Greystoke A, Ranson M, Hughes A, Dive C. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat, 2010, 120(2): 461-467. | [71] | Board RE, Thelwell NJ, Ravetto PF, Little S, Ranson M, Dive C, Hughes A, Whitcombe D. Multiplexed assays for detection of mutations inPIK3CA. Clin Chem, 2008, 54(4): 757-760. | [72] | Madic J, Piperno-Neumann S, Servois V, Rampanou A, Milder M, Trouiller B, Gentien D, Saada S, Assayag F, Thuleau A, Nemati F, Decaudin D, Bidard FC, Desjardins L, Mariani P, Lantz O, Stern MH. Pyrophosphorolysis-activated polymerization detects circulating tumor DNA in metastatic uveal melanoma. Clin Cancer Res, 2012, 18(14): 3934-3941. | [73] | Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, Wong HY, Valda Toro P, Cidado J, Blair BG, Chu D, Burns T, Higgins MJ, Stearns V, Jacobs L, Habibi M, Lange J, Hurley PJ, Lauring J, VanDenBerg DA, Kessler J, Jeter S, Samuels ML, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff AC, Park BH. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res, 2014, 20(10): 2643-2650. | [74] | Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang SL, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011, 83(22): 8604-8610. | [75] | Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DWY, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med, 2012, 4(136): 136ra68. | [76] | Fox EJ, Reid-Bayliss KS, Emond MJ, Loeb LA. Accuracy of next generation sequencing platforms. Next Gener Seq Appl, 2014, 1: 1000106. | [77] | Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol, 2014, 8(6): 1095-1111. | [78] | Fritz S, Klauss M, Bergmann F, Hackert T, Hartwig W, Strobel O, Bundy BD, Büchler MW, Werner J. Small (sendai negative) branch-duct IPMNs: not harmless. Ann Surg, 2012, 256(2): 313-320. | [79] | Rhim AD, Thege FI, Santana SM, Lannin TB, Saha TN, Tsai S, Maggs LR, Kochman ML, Ginsberg GG, Lieb JG, Chandrasekhara V, Drebin JA, Ahmad N, Yang YX, Kirby BJ, Stanger BZ. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology, 2014, 146(3): 647-651. | [80] | Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PEY, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer, 2016, doi: 10.1016/j.lungcan.2016.04.026. | [81] | Gonzalez-Cao M, Mayo-de-Las-Casas C, Molina-Vila MA, De Mattos-Arruda L, Mu?oz-Couselo E, Manzano JL, Cortes J, Berros JP, Drozdowskyj A, Sanmamed M, Gonzalez A, Alvarez C, Viteri S, Karachaliou N, Martin Algarra S, Bertran-Alamillo J, Jordana-Ariza N, Rosell R. BRAF mutation analysis in circulating free tumor DNA of melanoma patients treated with BRAF inhibitors. Melanoma Res, 2015, 25(6): 486-495. | [82] | Molina-Vila MA, de-Las-Casas CM, Bertran-Alamillo J, Jordana-Ariza N, González-Cao M, Rosell R. cfDNA analysis from blood in melanoma. Ann Transl Med, 2015, 3(20): 309. | [83] | Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, Anagnostou V, Parpart-Li S, Murphy D, Kay Li Q, Hruban CA, Scharpf R, White JR, O'Dwyer PJ, Allen PJ, Eshleman JR, Thompson CB, Klimstra DS, Linehan DC, Maitra A, Hruban RH, Diaz LA, Jr., Von Hoff DD, Johansen JS, Drebin JA, Velculescu VE. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun, 2015, 6: 7686. | [84] | Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA, Jr. Circulating mutant DNA to assess tumor dynamics. Nat Med, 2008, 14(9): 985-990. | [85] | Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P, Nerurkar A, Kozarewa I, Garrido JA, Dowsett M, Reis-Filho JS, Smith IE, Turner NC. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med, 2015, 7(302): 302ra133. | [86] | Tjensvoll K, Nordg?rd O, Smaaland R. Circulating tumor cells in pancreatic cancer patients: methods of detection and clinical implications. Int J Cancer, 2014, 134(1): 1-8. | [87] | Cybulski C, Carrot-Zhang J, Klu?niak W, Rivera B, Kashyap A, Woko?orczyk D, Giroux S, Nadaf J, Hamel N, Zhang SY, Huzarski T, Gronwald J, Byrski T, Szwiec M, Jakubowska A, Rudnicka H, Lener M, Masoj? B, Tonin PN, Rousseau F, Górski B, D?bniak T, Majewski J, Lubiński J, Foulkes WD, Narod SA, Akbari MR. Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet, 2015, 47(6): 643-646. | [88] | de Albuquerque A, Kubisch I, Breier G, Stamminger G, Fersis N, Eichler A, Kaul S, St?lzel U. Multimarker gene analysis of circulating tumor cells in pancreatic cancer patients: a feasibility study. Oncology, 2012, 82(1): 3-10. | [89] | de Wit S, van Dalum G, Lenferink ATM, Tibbe AGJ, Hiltermann TJN, Groen HJM, van Rijn CJM, Terstappen LWMM. The detection of EpCAM+ and EpCAM-circulating tumor cells. Sci Rep, 2015, 5: 12270. | [90] | Kling J. Beyond counting tumor cells. Nat Biotechnol, 2012, 30(7): 578-580. | [91] | Ling ZQ, Zhao Q, Zhou SL, Mao WM. MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma.. Eur J Surg Oncol, 2012, 38(4): 326-332. | [92] | Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst, 2000, 92(22): 1805-1811. | [93] | Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer, 2015, 15(6): 361-370. | [94] | Cinar P, Tempero MA. Monoclonal antibodies and other targeted therapies for pancreatic cancer. Cancer J, 2012, 18(6): 653-664. | [95] | Bruns CJ, Harbison MT, Davis DW, Portera CA, Tsan R, McConkey DJ, Evans DB, Abbruzzese JL, Hicklin DJ, Radinsky R. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res, 2000, 6(5): 1936-1948. | [96] | Solorzano CC, Baker CH, Bruns CJ, Killion JJ, Ellis LM, Wood J, Fidler IJ. Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm, 2001, 16(5): 359-370. | [97] | Labgaa I, Villanueva A. Liquid biopsy in liver cancer. Discov Med, 2015, 19(105): 263-273. |
|