[1] |
Chen KL, Piao CL, Hao YM, Feng LJ, Zhou JY, Luan SN, Liu LL, Li FF, Yuan SM, Cui ML. Cloning and functional analysis ofCYCLOIDEA(CYC)-like SvRAY1 gene from Senecio vulgaris. Journal of Zhejiang A&F University, 2021, 38(6):1153-1160.
|
|
陈柯俐, 朴春兰, 郝燕敏, 冯丽君, 周佳圆, 栾思楠, 刘乐乐, 李菲菲, 袁思明, 崔敏龙. 欧洲千里光CYCLOIDEA (CYC)类SvRAY1基因的克隆及功能分析. 浙江农林大学学报, 2021, 38(6):1153-1160.
|
[2] |
Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33(5):867-874.
pmid: 12609028
|
[3] |
Rong DQ, Fan YX, Qiao YM. A newly recorded of semi-escaping introduction in Hebei province, China. Seed, 2016, 35(10):65-66.
|
|
荣冬青, 樊英鑫, 乔永明. 河北省外来逸生种子植物——欧洲千里光. 种子, 2016, 35(10):65-66.
|
[4] |
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 1990, 346(6279):35-39.
doi: 10.1038/346035a0
|
[5] |
Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J, 1990, 9(3):605-613.
doi: 10.1002/j.1460-2075.1990.tb08152.x
pmid: 1968830
|
[6] |
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339):31-37.
doi: 10.1038/353031a0
|
[7] |
Liu JH, Xu BY, Zhang J, Jin ZQ. The interaction of MADS-box transcription factors and manipulating fruit development and ripening. Hereditas(Beijing), 2010, 32(9):893-902.
|
|
刘菊华, 徐碧玉, 张静, 金志强. MADS-box转录因子的相互作用及对果实发育和成熟的调控. 遗传, 2010, 32(9):893-902.
|
[8] |
Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 1996, 93(10):4793-4798.
doi: 10.1073/pnas.93.10.4793
|
[9] |
Wang YS, Zhang JL, Hu ZL, Guo XH, Tian SB, Chen GP. Genome-Wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. Int J Mol Sci, 2019, 20(12):2961.
doi: 10.3390/ijms20122961
|
[10] |
Zhang M, Huang H, Dai SL. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene, 2014, 537(2):203-213.
doi: 10.1016/j.gene.2014.01.002
pmid: 24434369
|
[11] |
Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 2003, 15(7):1538-1551.
doi: 10.1105/tpc.011544
pmid: 12837945
|
[12] |
Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 2003, 29(3):464-489.
doi: 10.1016/S1055-7903(03)00207-0
|
[13] |
Xia Y, Shi M, Chen WW, Hu RQ, Jing DL, Wu D, Wang SM, Li QF, Deng HH, Guo QG, Liang GL. Expression pattern and functional characterization of PISTILLATA ortholog associated with the formation of petaloid sepals in double-flower Eriobotrya japonica (Rosaceae). Front Plant Sci, 2020, 10:1685.
doi: 10.3389/fpls.2019.01685
|
[14] |
Davies B, Di Rosa A, Eneva T, Saedler H, Sommer H. Alteration of tobacco floral organ identity by expression of combinations ofAntirrhinum MADS-box genes. Plant J, 1996, 10(4):663-677.
pmid: 8893543
|
[15] |
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 2004, 16(3):741-754.
pmid: 14973163
|
[16] |
Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Mol Genet Genomics, 2010, 284(5):399-414.
doi: 10.1007/s00438-010-0574-z
|
[17] |
Sasaki K, Yamaguchi H, Nakayama M, Aida R, Ohtsubo N. Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture. Plant Mol Biol, 2014, 86(3):319-334.
doi: 10.1007/s11103-014-0231-8
|
[18] |
Park S, Lee E, Heo J, Kim DH, Chun HJ, Kim MC, Bang WY, Lee YK, Park SJ. Rapid generation of transgenic and gene-edited Solanum nigrum plants using Agrobacterium- mediated transformation. Plant Biotechnol Rep, 2020, 14:497-504.
doi: 10.1007/s11816-020-00616-7
|
[19] |
Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH. Organ identity genes and modified patterns of flower development in Gerbera hybrida(Asteraceae). Plant J, 1999, 17(1):51-62.
pmid: 10069067
|
[20] |
Ai Y, Zhang CL, Sun YL, Wang WN, He YH, Bao MZ. Characterization and functional analysis of five MADS- Box B Class genes related to floral organ identification in Tagetes erecta. PLoS One, 2017, 12(1):e0169777.
doi: 10.1371/journal.pone.0169777
|
[21] |
Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev, 1994, 8(13):1548-1560.
doi: 10.1101/gad.8.13.1548
|
[22] |
Nakatsuka T, Saito M, Nishihara M. Functional characterization of duplicated B-class MADS-box genes in Japanese gentian. Plant Cell Rep, 2016, 35(4):895-904.
doi: 10.1007/s00299-015-1930-6
pmid: 26769577
|
[23] |
Zeng ZH, Chen S, Xu MR, Wang M, Chen ZH, Wang LL, Pang JL. Cloning, expression, and tobacco overexpression analyses of a PISTILLATA/GLOBOSA-like(OfGLO1) gene from Osmanthus fragrans. Genes (Basel), 2021, 12(11):1748.
doi: 10.3390/genes12111748
|
[24] |
Tröbner W, Ramirez L, Motte P, Hue I, Huijser P, Lönnig WE, Saedler H, Sommer H, Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J, 1992, 11(13):4693-4704.
doi: 10.1002/j.1460-2075.1992.tb05574.x
pmid: 1361166
|
[25] |
Wang BQ, Liu J, Chu L, Jing X, Wang HD, Guo J, Yi B. Exogenous promoter triggers APETALA3 silencing through RNA-directed DNA methylation pathway in Arabidopsis. Int J Mol Sci, 2019, 20(18):4478.
doi: 10.3390/ijms20184478
|
[26] |
Matsunaga S, Isono E, Kejnovsky E, Vyskot B, Dolezel J, Kawano S, Charlesworth D. Duplicative transfer of a MADS box gene to a plant Y chromosome. Mol Biol Evol, 2003, 20(7):1062-1069.
doi: 10.1093/molbev/msg114
|
[27] |
Shchennikova AV, Shulga OA, Skryabin KG. Ectopic expression of the homeotic MADS-Box gene HAM31 (Helianthus annuus L.) in transgenic plants Nicotiana tabacum L. affects the gynoecium identity. Dokl Biochem Biophys, 2018, 483(1):363-368.
doi: 10.1134/S1607672918060182
pmid: 30607740
|
[28] |
Chen KL. Study on the function of CYCLOIDEA (CYC) SvCYC12 and AGAMUS-LIKE 43 (SvAGL43) genes in Asteraceae [Dissertation]. Zhejiang A&F University, 2021.
|
|
陈柯俐. 菊科欧洲千里光CYCLOIDEA(CYC)类 SvCYC12及AGAMOUS-LIKE 43(SvAGL43)基因的功能研究[学位论文]. 浙江农林大学, 2021.
|
[29] |
Hao YM, Chen KL, Feng LJ, Li FF, Cui ML, Piao CL. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris. Journal of Zhejiang A&F University, 2022, doi: 10.11833/j.issn.2095-0756.20210651.
doi: 10.11833/j.issn.2095-0756.20210651
|
|
郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光 SvAPETALA1 基因的克隆及功能分析. 浙江农林大学学报, 2022, doi: 10.11833/j.issn.2095-0756.20210651.
doi: 10.11833/j.issn.2095-0756.20210651
|
[30] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6):1547-1549.
doi: 10.1093/molbev/msy096
|
[31] |
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1):W293-W296.
doi: 10.1093/nar/gkab301
|
[32] |
Wu JG. Cloning and functional study of an R2R3-MYB SnMYB11 involved in anthocyanin synthesis in Solanum nigrum L.[Dissertation]. Zhejiang A&F University, 2021.
|
|
吴金国. 龙葵中花青素合成相关R2R3-MYB基因SnMYB11克隆与功能研究[学位论文]. 浙江农林大学, 2021.
|
[33] |
Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene, 2007, 404(1-2):10-24.
doi: 10.1016/j.gene.2007.08.005
|
[34] |
Lou H. Functional analysis of MADS-box gene related to flower organ development in Allium sativum L. [Dissertation]. Northeast Forestry University, 2019.
|
|
娄虎. 大蒜花器官发育相关MADS-box基因的功能分析[学位论文]. 东北林业大学, 2019.
|