遗传 ›› 2010, Vol. 32 ›› Issue (7): 694-700.doi: 10.3724/SP.J.1005.2010.00694

• 研究报告 • 上一篇    下一篇

基于共进化基因功能模块预测候选癌基因

朱晶1, 沈晓沛1, 肖会1, 张杨1, 王靖1, 郭政1, 2   

  1. 1. 电子科技大学生命科学与技术学院生物信息中心, 成都 610054; 2. 哈尔滨医科大学生物信息科学与技术学院, 哈尔滨 150086
  • 收稿日期:2009-09-17 修回日期:2009-12-23 出版日期:2010-07-20 发布日期:2010-07-20
  • 通讯作者: 郭政 E-mail:guoz@ems.hrm.edu.cn
  • 基金资助:

    国家自然科学基金项目(编号:30170515, 30370388, 30571034)资助

Identifying candidate cancer genes based on co-evolving gene modules

ZHU Jing1, SHEN Xiao-Pei1, XIAO Hui1, ZHANG Yang1, WANG Jing1, GUO Zheng1, 2   

  1. 1. School of Life Science and Bioinformatics Centre, University of Electronic Science and Technology of China, Chengdu 610054, China; 2. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
  • Received:2009-09-17 Revised:2009-12-23 Online:2010-07-20 Published:2010-07-20
  • Contact: GUO Zheng E-mail:guoz@ems.hrm.edu.cn

摘要: 癌基因组的体细胞突变扫查数据为研究人员发现新的癌基因提供了大量的信息。已有的通过基因突变频率寻找候选癌基因的方法倾向于发现突变频率较高的癌基因, 但是部分低频率突变的基因也可能在癌症发生过程中发挥重要作用。具有相似系统发生谱并且具有蛋白互作关系的基因可能具有相似的功能, 它们的损伤可能会导致相同或相似的疾病表型。基于这一假设, 文章提出了一种发现候选癌基因的新方法。首先, 寻找具有相似系统发生谱的蛋白质互作子网, 定义为共进化基因模块; 然后, 在癌基因组中发生至少一次非同义体细胞突变的基因中, 筛选出与已知癌基因在同一共进化模块并具有直接相互作用的基因, 预测为候选癌基因。据此, 文章共预测了15个候选癌基因, 其中只有2个基因在以往的工作中通过基于高突变频率的方法被识别为癌基因。因此, 该方法可以有效地发现突变频率低的候选癌基因。

关键词: 候选癌基因, 功能模块, 预测, 癌突变谱

Abstract: Data of somatic mutation screening of cancer genomes have provided us huge amounts of information for identifying new cancer genes. Current methods for identifying candidate cancer genes based on gene mutation frequencies tend to find cancer genes with high mutation frequencies. However, many genes with low mutation frequencies might also play important roles during tumorigenesis. Based on the assumption that genes with similar phylogenetic profiles and pro-tein-protein interactions might have similar functions and their disruptions might lead to similar disease phenotypes, we proposed a new approach to find candidate cancer genes. First, we searched for protein-protein interaction subnetworks within which proteins have similar phylogenetic profiles, termed as co-evolving gene modules. Then, we identified genes that have at least one non-synonymous mutation in cancer genomes and directly interact with known cancer genes in the same co-evolving gene modules and predicted them as candidate cancer genes. In this way, we found 15 candidate cancer genes, among which only two genes had been identified previously as candidate cancer genes using the methods based on gene mutation frequencies. Thus, the candidate cancer genes with low mutation frequencies can be found by our method.

Key words: functional module, prediction, cancer mutation profiles, candidate cancer genes