[1] Daum M, Herrmann S, Wilkinson B, Bechthold A. Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol, 2009, 13(2): 180-188.[2] Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol, 2009, 60(1): 335-355.[3] Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microor-ganisms. Mol Pharm, 2008, 5(2): 167-190.[4] Walsh CT, Fischbach MA. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc, 2010, 132(8): 2469-2493.[5] Muntendam R, Melillo E, Ryden A, Kayser O. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol, 2009, 84(6): 1003-1019.[6] Komatsu M, Tsuda M, ōmura S, Oikawa H, Ikeda H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci USA, 2008, 105(21): 7422-7427.[7] Brown GD. The biosynthesis of steroids and triterpenoids. Nat Prod Rep, 1998, 15(6): 653-696.[8] Cane DE, Rosshi T, Pachlatko JP. The biosynthesis of pentalenolactone. Tetrahedron Lett, 1979, 20(38): 3639-3642.[9] Tamamura T, Sawa T, Isshiki K, Masuda T, Homma Y, Inuma H, Naganawa H, Hamada M, Takeuchi T, Umezawa H. Isolation and characterization of terpentecin, a new antitumor antibiotic. J Antibiot, 1985, 38(12): 1664-1669.[10] Shiomi K, Nakamura H, Iinuma H, Naganawa H, Isshiki K, Takeuchi T, Umezawa H, Iitaka Y. Structures of new anti-biotics napyradiomycins. J Antibiot, 1986, 39(4): 494-501.[11] Nakanishi S, Osawa K, Saito Y, Kawamoto I, Kuroda K, Kase H. KS-505a, a novel inhibitor of bovine brain Ca2+ and calmodulin-dependent cyclic-nucleotide phosphodiesterase from Streptomyces argenteolus. J Antibiot, 1992, 45(3): 341-347. [12] Komiyama K, Funayama S, Anraku Y, Ishibashi M, Takahashi Y, Omura S. Novel antibiotic, furaquinocins A and B. Taxonomy, fermentation, isolation and physico-chemical and biological characteristics. J Antibiot, 1990, 43(3): 247-252.[13] Torigoe K, Wakasugi N, Sakaizumi N, Ikejima T, Suzuki H, Kojiri K, Suda H. BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644. J Antibiot, 1996, 49(3): 314-317.[14] Komaki H, Nemoto A, Tanaka Y, Takagi H, Yazawa K, Mikami Y, Shigemori H, Kobayashi J, Ando A, Nagata Y. Brasilicardin A, a new terpenoid antibiotic from pathogenic Nocardia brasiliensis: fermentation, isola-tion and biological activity. J Antibiot, 1996, 52(1): 13-19.[15] Dairi T. Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes. J Antibiot, 2005, 58(4): 227-243.[16] Dairi T, Hamano Y, Kuzuyama T, Itoh N, Furihata K, Seto H. Eubacterial diterpene cyclase genes essential for production of the isoprenoid antibiotic terpentecin. J Bacteriol, 2001, 183(20): 6085-6094.[17] Kawasaki T, Kuzuyama T, Furihata K, Itoh N, Seto H, Dairi T. A relationship between the mevalonate pathway and isoprenoid production in actinomycetes. J Antibiot, 2003, 56(11): 957-966.[18] Kawasaki T, Hayashi Y, Kuzuyama T, Furihata K, Itoh N, Seto H, Dairi T. Biosynthesis of a natural polyketide-iso-prenoid hybrid compound, furaquinocin A: identification and heterologous expression of the gene cluster. J Bacteriol, 2006, 188(4): 1236-1244.[19] Winter JM, Moffitt MC, Zazopoulos E, McAlpine JB, Dorrestein PC, Moore BS. Molecular basis for chloronium-mediated meroterpene cyclization: cloning, sequencing, and heterologous expression of the napyradiomycin bio-synthetic gene cluster. J Biol Chem, 2007, 282(22): 16362-16368.[20] Bringmann G, Haagen Y, Gulder TAM, Gulder T, Heide L. Biosynthesis of the isoprenoid moieties of furanonaph-thoquinone I and endophenazine A in Streptomyces cinnamonensis DSM 1042. J Org Chem, 2007, 72(11): 4198-4204.[21] Haagen Y, Glück K, Fay K, Kammerer B, Gust B, Heide L. A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonen-sis DSM 1042. Chembiochem, 2006, 7(12): 2016-2027.[22] Dürr C, Schnell HJ, Luzhetskyy A, Murillo R, Weber M, Welzel K, Vente A, Bechthold A. Biosynthesis of the ter-pene phenalinolactone in Streptomyces sp. Tü6071: analysis of the gene cluster and generation of derivatives. Chem Biol, 2006, 13(4): 365-377.[23] Hayashi Y, Onaka H, Itoh N, Seto H, Dairi T. Cloning of the gene cluster responsible for biosynthesis of KS-505a (longestin), a unique tetraterpenoid. Biosci Biotechnol Biochem, 2007, 71(12): 3072-3081.[24] Hayashi Y, Matsuura N, Toshima H, Itoh N, Ishikawa J, Mikami Y, Dairi T. Cloning of the gene cluster responsible for the biosynthesis of brasilicardin A, a unique diterpenoid. J Antibiot, 2008, 61(3): 164-174.[25] Shen B, Smanski MJ. Sequence of Streptomyces platensis platensimycin biosynthetic gene cluster and methods of producing platensimycin, platencin antibiotics and their analogs and antibacterial screening. U S Pat Appl Publ, 2009, 68.[26] Smanski MJ, Peterson RM, Rajski SR, Shen B. Engineered Streptomyces platensis strains that over-produce antibiotics platensimycin and platencin. Antimicrob Agents Chemother, 2009, 53(4): 1299-1304.[27] Yu ZG, Smanski MJ, Peterson RM, Marchillo K, Andes D, Rajski SR, Shen B. Engineering of Streptomyces platensis MA7339 for overproduction of Platencin and congeners. Org Lett, 2010, 12(8): 1744-1747.[28] Cane DE, He XF, Kobayashi S, Omura S, Ikeda H. Geos-min biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot, 2006, 59(8): 471-479.[29] Jiang JY, He XF, Cane DE. Geosmin biosynthesis. Streptomyce scoelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J Am Chem Soc, 2006, 128(25): 8128-8129.[30] Takamatsu S, Lin X, Nara A, Komatsu M, Cane DE, Ikeda H. Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi-isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi-isozizaene metabolite. Microb Biotechnol, 2011, 4(2): 184-191.[31] Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem, 2008, 283(13): 8183-8189.[32] You Z, Omura S, Ikeda H, Cane DE. Pentalenolactone biosynthesis. Molecular cloning and assignment of bio-chemical function to PtlH, a non-heme iron dioxygenase of Streptomyces avermitilis. J Am Chem Soc, 2006, 128(20): 6566-6567.[33] Chou WKW, Fanizza I, Uchiyama T, Komatsu M, Ikeda H, Cane DE. Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J Am Chem Soc, 2010, 132(26): 8850-8851.[34] Komatsu M, Tsuda M, ōmura S, Oikawa H, Ikeda H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci USA, 2008, 105(21): 7422-7427.[35] Jiang JY, He XF, Cane DE. Biosynthesis of the earthy odorant geosmin by a bifunctional Streptomyces coeli-color enzyme. Nat Chem Biol, 2007, 3(11): 711-715.[36] He XF, Cane DE. Mechanism and stereochemistry of the germacradienol/germacrene D synthase of Streptomyces coelicolor A3(2). J Am Chem Soc, 2004, 126(9): 2678-2679.[37] Jiang JY, Cane DE. Geosmin biosynthesis. Mechanism of the fragmentation-rearrangement in the conversion of germacradienol to geosmin. J Am Chem Soc, 2008, 130(2): 428-429.[38] Lin X, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor. Mechanism and stereochemistry of the enzymatic forma-tion of epi- isozizaene. J Am Chem Soc, 2009, 131(18): 6332-6333.[39] Lesburg CA, Zhai GZ, Cane DE, Christianson DW. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science, 1997, 277(5333): 1820-1824.[40] Quaderer R, Omura S, Ikeda H, Cane DE. Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PtlI, a cytochrome P450 of Streptomyces avermitilis. J Am Chem Soc, 2006, 128(40): 13036-13037.[41] You Z, Omura S, Ikeda H, Cane DE, Jogl G. Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem, 2007, 282(50): 36552-36560.[42] You Z, Omura S, Ikeda H, Cane DE. Pentalenolactone biosynthesis: molecular cloning and assignment of bio-chemical function to PtlF, a short-chain dehydrogenase from Streptomyces avermitilis, and identification of a new biosynthetic intermediate. Arch Biochem Biophys, 2007, 459(2): 233-240.[43] Seo MJ, Zhu DQ, Endo S, Ikeda H, Cane DE. Genome mining in Streptomyces. Elucidation of the role of Baeyer-Villiger monooxygenases and non-heme iron-dependent dehydrogenase/oxygenases in the final steps of the biosynthesis of pentalenolactone and neopen-talenolactone. Biochemistry, 2011, 50(10): 1739-1754.[44] Zhu DQ, Seo MJ, Ikeda H, Cane DE. Genome mining in Streptomyces: Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J Am Chem Soc, 2011, 133(7): 2128-2131.[45] Bernhardt P, Okino T, Winter JM, Miyanaga A, Moore BS. A stereoselective vanadium-sependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc, 2011, 133(12): 4268-4270. |