[1] Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmaco-genetics, 1996, 6(1): 1-42.[2] Frear DS, Swanson HR, Tanaka FS. N-Demethylation of substituted 3-(phenyl)-1-methylureas: isolation and characterization of a microsomal mixed function oxidase from cotton. Phytochemistry, 1969, 8(11): 2157-2169.[3] Paquette SM, Bak S, Feyereisen R. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol, 2000, 19(5): 307-317.[4] Murphy PJ, West CA. The role of mixed function oxidases in kaurene metabolism in Echinocystis macrocarpa Greene endosperm. Arch Biochem Biophys, 1969, 133(2): 395-407.[5] Li LY, Cheng H, Gai JY, Yu DY. Genome-wide identifycation and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Planta, 2007, 226(1): 109-123.[6] Lew FL, West CA. (-)-kaur-16-en-7β-ol-19-oic acid, an intermediate in gibberellin biosynthesis. Phytochemistry, 1971, 10(9): 2065-2076.[7] Robert PD, Douglas GL. Multiple forms of plant cytochromes P-450. Plant Physiol, 1991, 96(3): 669-674.[8] Werck-Reichhart D. Cytochromes P450 in phenylpro-panoid metabolism. Drug Metabol Drug Interact, 1995, 12(3-4): 221-243.[9] Schuler MA. The role of cytochrome P450 monooxy-genases in plant-insect interactions. Plant Physiol, 1996, 112(4): 1411-1419.[10] 王新宇, 王崇英, Olsson O. 杨树细胞色素P450类固醇单加氧酶(CYP90)基因的克隆与分析. 遗传学报, 2005, 32(4): 384-392.[11] 阮仁余, 孔建强, 郑晓东, 张书香, 秦咸蕴, 程克棣, 王建明, 王伟. 中国红豆杉细胞色素P450还原酶的基因克隆、表达与活性分析. 遗传, 2010, 32(11): 1187-1194.[12] Nelson DR, Werck-Reichhart D. A P450-centric view of plant evolution. Plant J, 2011, 66(1): 194-211.[13] Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol, 2004, 135(2): 756-772.[14] Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol, 2001, 19(4): 371-374.[15] Siminszky B, Gavilano L, Bowen SW, Dewey RE. Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxy-genase. Proc Natl Acad Sci USA, 2005, 102(41): 14919-14924.[16] Burger C, Rondet S, Benveniste P, Schaller H. Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14alpha-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J Exp Bot, 2003, 54(388): 1675-1683.[17] Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, La-key N. Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: Proceedings, 5èmes Journées Scientifiques du Tabacde Bergerac-5th Bergerac Tobacco Scientific Meeting, Bergerac, France, 2003: 117-130.[18] Edwards KD, Bombarely A, Story GW, Allen F, Mueller LA, Coates SA, Jones L. TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics, 2010, 11: 142, doi: 10.1186/1471-2164-11-142.[19] Altschul SF, Madden TL, Schāffer AA, Zhang JG, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25(17): 3389-3402.[20] Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res, 2000, 10(4): 516-522.[21] Lee DS, Nioche P, Hamberg M, Raman CS. Structural in-sights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature, 2008, 455(7211): 363-368.[22] Li LN, Chang Z Z, Pan Z, Fu ZQ, Wang XQ. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci USA, 2008, 105(37): 13883-13888.[23] Ravichandran KG, Boddupalli SS, Hasemann CA, Peter-son JA, Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science, 1993, 261(5122): 731-736.[24] Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95(25): 14863-14868.[25] Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, Galbraith DW. Microarray-based analysis of gene expres-sion in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene, 2001, 272(1-2): 61-74.[26] Yoshida Y, Aoyama Y, Noshiro M, Gotoh O. Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem Biophys Res Commun, 2000, 273(3): 799-804.[27] Lepesheva GI, Waterman MR. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological king-doms. Biochim Biophys Acta, 2007, 1770(3): 467-477.[28] Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc Natl Acad Sci USA, 2001, 98(17): 9694-9699.[29] Hamberger B, Bohlmann J. Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine. Biochem Soc Trans, 2006, 34(Pt 6): 1209-1214.[30] Graham SE, Peterson JA. How similar are P450s and what can their differences teach us? Arch Biochem Biophys, 1999, 369(1): 24-29.[31] Schuler MA. Plant Cytochrome P450 monooxygenases. Crit Rev Plant Sci, 1996, 15(3): 235-284.[32] Chen S, Zhou D. Functional domains of aromatase cyto-chrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments. J Biol Chem, 1992, 267(31): 22587-22594.[33] Podust LM, Stojan J, Poulos TL, Waterman MR. Substrate recognition sites in 14α-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Bio-chem, 2001, 87(4): 227-235.[34] Fu CJ, Xiong J, Miao W. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila. BMC Genomics, 2009, 10: 208, doi: 10.1186/1471-2164-10-208.[35] Bolwell GP, Bozak K, Zimmerlin A. Plant cytochrome P450. Phytochemistry, 1994, 37(6): 1491-1506.[36] Ehlting J, Sauveplane V, Olry A, Ginglinger JF, Provart NJ, Werck-Reichhart D. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol, 2008, 8: 47, doi: 10.1186/1471-2229-8-47.[37] The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485(7400): 635-641.[38] 贺丽虹, 赵淑娟, 胡之璧. 植物细胞色素P450基因与功能研究进展. 药物生物技术, 2008, 15(2): 142-147.[39] Russell DW. The metabolism of aromatic compounds in higher plants. X. Properties of the cinnamic acid 4-hydroxylase of pea seedlings and some aspects of its metabolic and developmental control. J Biol Chem, 1971, 246(12): 3870-3878.[40] Chapple C. Molecular-genetic analysis of plant cyto-chrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49(1): 311-343.[41] Davidson SE, Reid JB, Helliwell CA. Cytochromes P450 in gibberellin biosynthesis. Phytochem Rev, 2006, 5(2-3): 405-419.[42] Kutchan TM, Schröder J. Selected cell cultures and induc-tion methods for cloning and assaying cytochromes P450 in alkaloid pathways. Methods Enzymol, 2002, 357: 370-381.[43] Nafisi M, Sønderby IE, Hansen BG, Geu-Flores F, Nour-Eldin HH, Nørholm MH, Jensen NB, Li J, Halkier BA. Cytochromes P450 in the biosynthesis of glucosi-nolates and indole alkaloids. Phytochem Rev, 2006, 5(2-3): 331-346.[44] Oakley TH, Østman B, Wilson ACV. Repression and loss of gene expression outpaces activation and gain in recently duplicated fly genes. Proc Natl Acad Sci USA, 2006, 103(31): 11637-11641.[45] Gu X. Statistical framework for phylogenomic analysis of gene family expression profiles. Genetics, 2004, 167(1): 531-542.[46] Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid bio-synthesis. Plant Physiol, 2001, 126(2): 770-779.[47] Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H. CYP90C1 and CYP90D1 are in-volved in different steps in the brassinosteroid biosynthe-sis pathway in Arabidopsis thaliana. Plant J, 2005, 41(5): 710-721.[48] Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell, 1998, 10(2): 231-243.[49] Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis. Cell, 1996, 85(2): 171-182.[50] Boettcher C, Fellermeier M, Boettcher C, Dräger B, Zenk MH. How human neuroblastoma cells make morphine. Proc Natl Acad Sci USA, 2005, 102(24): 8495-8500.[51] 杨致荣, 毛雪, 杨致芬, 李润植. 细胞色素P450基因及其在植物改良中的应用. 遗传, 2003, 25(2): 237-240. |