[1] PM, Woolliams JA, Smith D, Williams JL. Esti-mation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection . J Dairy Sci , 2002, 85(9): 2368-2375. [2] JI, Feldmesser E, Golik M, Tager-Cohen I, Domoc-hovsky R, Alus O, Ezra E, Ron M. Factors affecting inc-orrect paternity assignment in the Israeli Holstein pop-ulation . J Dairy Sci , 2004, 87(8): 2627-2640. [3] LG, Madsen P, Petersen J. The influence of incorrect sire identification on the estimates of genetic parameters and breeding values. In: Proceedings of the 2nd World Congress on Genetics Applied to Livestock Prod-uction. Madrid, Spain, 1982: 200-208. [4] H, Van Arendonk JAM. Estimation of milk pro-tein gene frequencies in crossbred cattle by maximum likelihood . J Dairy Sci , 1991, 74(8): 2728-2736. [5] JG, Kelly EP. Errors of identification Amongst cattle presented as progeny of some bulls used in the artificial-insemination service in Ireland . Ir Vet J , 1987, 41(10): 348-352. [6] G, Wiggans GR, Powell RL. Impact of paternity errors in cow identification on genetic evaluations and int-ernational comparisons . J Dairy Sci , 2001, 84(11): 2523- 2529. [7] 田雨泽, 刘和凤. 应用血型分析技术对奶牛亲子关系正确率的调查初报 . 中国畜牧兽医, 2005, 32(3): 22-23. [8] 张毅, 孙东晓, 俞英, 王雅春, 张沅. 应用微卫星DNA标记分析荷斯坦母牛系谱可靠性及影响因素 . 畜牧兽医学报, 2011, 42(2): 163-168. [9] 周磊, 刘林, 李东, 张胜利, 刘剑锋, 丁向东, 张毅, 王雅春, 张勤. 利用 SNP 标记进行北京地区中国荷斯坦牛亲子推断的研究 . 畜牧兽医学报, 2012, 43(1): 44-49. [10] 张嘉保, 高庆华, 陈庆波. 微卫星DNA在吉戎兔亲子鉴定中的应用研究 . 遗传, 2005, 27(6): 903-907. [11] K, Bennewitz J, Kalm E. Wrong and missing sire information affects genetic gain in the Angeln dairy cattle population . J Dairy Sci , 2006, 89(1): 315-321. [12] C. Contribution of blood typing to dairy science progress . J Dairy Sci , 1967, 50(2): 253-260. [13] 初芹, 王雅春. 单核苷酸多态性标记在牛亲子鉴定中的应用与展望 . 中国畜牧杂志, 2011, 47(7): 73-76. [14] Y, Lipkin E, Darvasi A, Nave A, Gruenbaum Y, Beckmann JS, Soller M. Parentage identification in the bovine using “deoxyribonucleic acid fingerprints” . J Dairy Sci , 1990, 73(11): 3306-3311. [15] BS, Anderson AD, Hepler AB. Genetic relatedness analysis: modern data and new challenges . Nat Rev Genet , 2006, 7(10): 771-780. [16] RL, Hammond HA, Coto I, Caskey CT. Rapid and efficient resolution of parentage by amplification of short tandem repeats . Am J Hum Genet , 1994, 55(1): 190-195. [17] ML, Gaillard C, Wigger G, Fries R. Microsatellite-based parentage control in cattle . Anim Genet , 1995, 26(1): 7-12. [18] MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele JW, Smith TPL, Chitko-McKown CG, Laegreid WW. Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle . Mamm Genome , 2002, 13(5): 272-281. [19] EC, Garza JC. The power of single-nucleotide polymorphisms for large-scale parentage inference . Gen - etics , 2006, 172(4): 2567-2582. [20] JR, Pena SD. Efficient human paternity testing with a panel of 40 short insertion-deletion polymorphisms . Genet Mol Res , 2010, 9(1): 601-607. [21] FA, Durstewitz G, Habermann FA, Thaller G, Kramer W, Kollers S, Buitkamp J, Georges M, Brem G, Mosner J, Fries R. Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds . Anim Genet , 2004, 35(1): 44-49. [22] AG, Ardren WR. Methods of parentage analysis in natural populations . Mol Ecol , 2003, 12(10): 2511-2523. [23] ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment . Mol Ecol , 2007, 16(5): 1099-1106. [24] KF, Queller DC. Computer software for performing likelihood tests of pedigree relationship using genetic markers . Mol Ecol , 1999, 8(7): 1231-1234. [25] Z, Taylor JA. SNPinfo: integrating GWAS and cand-idate gene information into functional SNP selection for genetic association studies . Nucleic Acids Res , 2009, 37(Suppl. 2): W600-W 605. [26] AC, Li G, Edwards S, Zhu J, Laurie C, Tokiwa G, Lum PY, Wang S, Castellani LW, Lusis AJ, Carlson S, Sa-chs AB, Schadt EE. Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels . Genomics , 2005, 86(5): 505-517. [27] SH, van der Werf JHJ, Hayes BJ, Goddard ME, Viss-cher PM. Predicting unobserved phenotypes for complex traits from whole-genome SNP data . PLoS Genet , 2008, 4(10): e1000231. [28] NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits from SNPs . Nat Rev Genet , 2013, 14(7): 507-515. [29] L, Liu JF, Sun DX, Ma PP, Ding XDQ, Yu Y, Zhang Q. Genome wide association studies for milk production traits in Chinese Holstein population . PLoS ONE , 2010, 5(10): e13661. [30] X, Zhang Z, Li X, Wang S, Wu X, Sun D, Yu Y, Liu J, Wang Y, Zhang Y, Zhang S, Zhang Y, Zhang Q. Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows . J Dairy Sci , 2013, 96(8): 5315-5323. [31] LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O'Connell J, Moore SS, Smith TPL, Sonstegard TS, Van Tassell CP. Development and Char-acterization of a High Density SNP Genotyping Assay for Cattle . PLoS ONE , 2009, 4(4): e5350. Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark [32] Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TPL, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MAM. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next genera-tion sequencing technology . PLoS ONE , 2009, 4(8): e6524. [33] Core Team. R: A language and environment for statis-tical computing . R Foundation for Statistical Computing, Vienna, Austria, 2014. [34] Wilmer J, Allen PJ, Pomeroy PP, Twiss SD, Amos W. Where have all the fathers gone? An extensive microsatellite analysis of paternity in the grey seal ( Hali - choerus grypus ) . Mol Ecol , 1999, 8(9): 1417-1429. |