遗传 ›› 2014, Vol. 36 ›› Issue (10): 974-984.doi: 10.3724/SP.J.1005.2014.0974
冉茂良1,2,陈斌1,2,尹杰3,4,杨岸奇1,2,李智1,2,蒋明1,2
收稿日期:
2014-05-04
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
陈斌,教授,博士生导师,研究方向:猪的遗传育种。E-mail: chenbin7586@126.com
E-mail:ranmaoliang0903@126.com
作者简介:
冉茂良,博士研究生,专业方向:猪的遗传育种。E-mail: ranmaoliang0903@126.com
基金资助:
Maoliang Ran1, 2, Bin Chen1, 2, Jie Yin3, 4, Anqi Yang1, 2, Zhi Li1, 2, Ming Jiang1, 2
Received:
2014-05-04
Online:
2014-10-20
Published:
2014-10-20
摘要: MicroRNA(miRNA)是一类长约22 nt的非编码小RNA,广泛存在于各种生物中,调节生物体生长、发育和凋亡等过程。研究表明,miRNA在猪肌肉、脂肪、生殖系统以及免疫系统等的发育过程中发挥着重要的调控作用。此外,高通量的新一代测序技术在猪miRNA的挖掘和差异表达研究中发挥着巨大的作用。文章综述了高通量的新一代测序技术在挖掘猪miRNA中的应用以及一些miRNA在猪脂肪代谢、肌肉发育、卵母细胞成熟和B、T淋巴细胞发育中的调控作用,旨在为猪miRNA的研究提供参考,为利用miRNA调控和改善猪肉品质、生长性能、繁殖性能以及免疫机能提供理论基础和研究思路。
冉茂良,陈斌,尹杰,杨岸奇,李智,蒋明. 猪microRNA组学研究进展[J]. 遗传, 2014, 36(10): 974-984.
Maoliang Ran, Bin Chen, Jie Yin, Anqi Yang, Zhi Li, Ming Jiang. Advances in porcine miRNAome[J]. HEREDITAS(Beijing), 2014, 36(10): 974-984.
[1] E, Danielsen M, Larsen K, Bendixen C. Advances in porcine genomics and proteomics-a toolbox for developing the pig as a model organism for molecular biomedical research. Brief Funct Genomics , 2010, 9(3): 208-219. [2] RC, Feinbaum RL, Ambros V. The C. elegans heterochronicgene lin-4 encodes small RNAs with antisense com-plementarityto lin-14. Cell , 1993, 75(5): 843-854. [3] 董园园, 李海燕, 李校堃. MicroRNAs的分子进化与调控机制. 遗传, 2010, 32(9): 874-880. [4] 孟丽军, 宋亚娟, 刘美玲, 张秀军. 小RNA分子与精子发生调控. 遗传, 2011, 33(1): 9-16. [5] Y, Stricker HM, Gou DM, LiuL. MicroRNA: past and present. Front Biosci , 2007, 12: 2316-2329. [6] N, Cohen SM. MicroRNA functions. Annu Rev Cell DevBiol , 2007, 23: 175-205. [7] 宋沁馨,周国华. MicroRNA定量检测方法的研究进展. 遗传, 2010, 32(1): 31-40. [8] WC, Marth G. EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res , 2008, 18(9): 1538-1543. [9] GX, Li YJ, Li XJ, Ning XM, Li MH, Yang GS. MicroRNA identity and abundance in developing swine adipose tissue as determined by solexa sequencing. J Cell Biochem , 2011, 112(5): 1318-1328. [10] Y, Huang JM, Liu G, Zhang JB, Wang JY, Liu CK, Fang MY. A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs. BMC Genomics , 2014, 15(1): 47. [11] XH, Tang ZL, Liu HL, Wang N, Ju HM, Li K. Discovery of microRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS ONE , 2012, 7(12): e52123. [12] O, Balcells I, Núñez JI, VeraG, Castelló A, Tomàs A, Sánchez A. MiRNA expression profile analysis in kidney of different porcine breeds. PLoS ONE , 2013, 8(1): e55402. [13] M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B. MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet , 2010, 41(2): 159-168. [14] JH, Wei WJ, Xiao X, Zhu MJ, Fan B,, Zhao SH. Expression analysis of miRNAs in porcine fetal skeletal muscle on days 65 and 90 of gestation. Asian Austral J Anim Sci , 2008, 21(7): 954-960. [15] B, Liu HL, Shi FX, Wang JY. MicroRNA expression profiles of porcine skeletal muscle. Animal Genetics , 2010, 41(5): 499-508. [16] SH, Cao JH, Feng Y, Liu H, Li XY. Identification of novel regulators in porcine skeletal muscle growth by integrated analysis of miRNA and mRNA expression. In: Plant and Animal Genome XX Conference.2012, 14-18. [17] C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang SW. Solexa sequencing identification of conserved and novel microRNAs in backfat of large white and chinesemeishan pigs. PLoS ONE , 2012, 7(2): e31426. [18] HY, Xi QY, Xiong YY, Liu XL, Cheng X, Shu G, Wang SB, Wang LN, Gao P, Zhu XT, Jiang QY, Yuan L, ZhangYL. Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds. Anim Genet , 2012, 43(6): 704-713. [19] MZ, Liu YK, Wang T, Guan JQ, LuoZG, ChenHS, WangX, ChenL, MaJD, MuZP, Jiang AA, Zhu L , LangQL, ZhouXC, Wang JY, Zeng WX, Li N, Li K, GaoXL, Li XW. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci , 2011, 7(7): 1045-1055. [20] CJ, Sun BX, Niu SL, Yang RJ, Liu BY, Lu CY, Meng JL, Qiu ZY, Zhang LY, Zhao ZH. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using solexa deep sequencing. FEBS J , 2012, 279(6): 964-975. [21] YH, Ma JD, Chen L, Luo PB, Zhou J, Li MZ, Li XW. Comparison of microRNA transcriptomes between immature and mature porcine testes. J Anim Vet Adv , 2014, 13(3): 132-138. [22] YR, Li MZ, Wang T, Liang Y, Zhong ZJ, Wang XY, Zhou Q, Chen L, Lang QL, He ZP, Chen XH, Gong JJ, Gao XL, Li XW, Lv XB. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS ONE , 2012, 7(8): e43691. [23] LF, Ye LZ, Liu G, Shao GC, Zheng R, Ren ZQ, Zuo B, Xu DQ, Lei MG, Jiang SW, Deng CY, Xiong YZ, LiFG. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature andmature testes. PLoS ONE , 2010, 5(8): e11744. [24] LJ, Liu RZ, Cheng W, Zhu MJ, Li XP, Zhao SH, Yu M. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. PLoS ONE , 2014, 9(2): e87867. [25] E, Ellis SE, Pratt SL. Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction. Mol Reprod Dev , 2009, 76(3): 218-219. [26] SS, Li XY, Liu T, Cao JH, Zhong Q, Zhao SH. Discovery of porcine microRNAs in multiple tissues by a solexa deep sequencing approach. PLoS ONE , 2011, 6(1): e16235. [27] Y, Tang X, Song Q, Ji Y, Wang H, Wang H, Jiao H, Ouyang H, Pang D. Identification and characterization of pig embryo microRNAs by solexa sequencing. Reprod Domest Anim , 2013, 48(1): 112-120. [28] HY, Xi QY, Xiong YY, Cheng X, Qi Q, Yang L, Shu G, Wang SB, Wang LN,Gao P, Zhu XT, Jiang QY, Zhang YL, Yuan L. A comprehensive expression profile of microRNAs in porcine pituitary. PLoS ONE , 2011, 6(9): e24883. [29] A, Kaczkowski B, Busk PK, Søkilde R, Litman T, Fredholm M, Cirera S. MicroRNA expression profiling of the porcine developing brain. PLoS ONE , 2011, 6(1): e14494. [30] O, Balcells I, Córdoba S, CastellóA, Sánchez A. Determination of reference microRNAs for relative quantification in porcine tissues. PLoS ONE , 2012 7(9): e44413. [31] E, Safranski TJ,Pratt SL. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology , 2011, 76(8): 1532-1539. [32] H, Bendixen E, Restelli L, Ceciliani F. The adipose tissue in farm animals: a proteomic approach. Curr Protein Pept Sci , 2014, 15(2): 146-155. [33] GX, Wu ZS, Li XJ, Ning XM, Li YJ, Yang GS. Biological role of microRNA-103 based on expression profile and target genes analysis in pigs. Mol Biol Rep , 2011, 38(7): 4777-4786. [34] Y, Zuo JR, Zhang YC, Xie Y, Hu F, Cheng LH, Liu BL, Liu F. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun , 2013,438(4): 575-580. [35] GX, Xu GF, Ji CB, Shi CM, Shen YH, Chen L, Zhu LJ, Yang L, Zhao YP, Guo XR. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene , 2014, 533(2): 481-487. [36] C, Xie WD, Li F, Lv Q, He J, Wu JB, Gu DY, Xu NH, Zhang YO. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett , 2011, 585(20): 3303-3309. [37] M, Yan LM, Zhang WY, Li YM, Tang AZ, Ou HS. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol Biol Rep , 2013, 40(8): 5027-5034. [38] L, Dai YM, Ji CB, Yang L, Shi CM, Xu GF, Pang LX, Huang FY, Zhang CM, Guo XR. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol Cell Endocrinol , 2014, 393(1-2): 65-74. [39] 宁小敏, 李美航, 仇杨, 李艳杰, 董培越, 杨公社. miR-191通过调控C/EBPβ转录影响猪前体脂肪细胞分化. 生物化学与生物物理进展, 2013, 40(2): 165-176. [40] miR-135a和miR-183对3T3-L1前脂肪细胞分化及脂肪形成的调控作用研究[学位论文]. 武汉: 华中农业大学, 2013. [41] YD, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang SW. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol , 2013, 45(8): 1585-1593. [42] M, Yan LM, Li YM, Zhang WY, Wang H, Tang AZ, Ou HS. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genet Mol Res , 2013, 12(4): 5267-5277. [43] L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism , 2014, 63(2): 272-282. [44] M, Nakajima I, Chikuni K, Kojima M, Awata T, Mikawa S. MicroRNA-33b downregulates the differentiation and development of porcine preadipocytes. Mol Biol Rep , 2014, 41(2): 1081-1090. [45] HL, Song CC, Li YF, He JJ, Li YL, Zheng XL, Yang GS. miR-125a inhibits porcine preadipocytes differentiation by targeting ERRα. Mol Cell Biochem , 2014, 395(1-2): 155-165. [46] EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol , 2011, 31(4): 626-638. [47] WY, Bi PP, Shan TZ, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang S. miR-133a regulates adipocyte brow-ning in vivo. PLoS Genet , 2013, 9(7): e1003626. [48] T, Li M, Guan J, Li P, Wang H, Guo Y, Shuai S, Li X. MicroRNAs miR-27a and miR-143 regulate porcine adi-pocyte lipid metabolism. Int J Mol Sci , 2011, 12(11): 7950-7959. [49] HY, Chen X, Guan LZ, Qi Q, Shu G, Jiang QY, Li Y, Xi QY, Zhang YL. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS ONE , 2013, 8(10): e71568. [50] Y, Chen Y, Zhang Y, Zhang Y, Chen L, Mo D. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int J Biol Sci , 2012, 8(10): 1408-1417. [51] DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, HansenJL, TeisnerB, SheikhSP. MicroRNA-15a fine-tunes the level of delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res , 2010, 316(10): 1681-1691. [52] CQ, Lu YJ, Pan ZW, Chu WF, Luo XB, Lin HX, Xiao JN, Shan HL, Wang ZG, Yang BF. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci , 2007, 120(17): 3045-3052. [53] TG, Smith TPL, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ,Wiedmann RT. MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics , 2009, 10(1): 77. [54] JF, Mandel EM, Thomson JM, Wu QL, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet , 2006, 38(2): 228-233. [55] YT, Ge YJ, Drnevich J, Zhao Y, Band M, Chen J. Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol , 2010, 189(7): 1157-1169. [56] CQ, Huang HR, Sun X, Guo YH, Hamblin M, Ritchie RP, Garcia-Barrio MT, Zhang JF, Chen YE. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev , 2011, 20(2): 205-210. [57] ZL, Liang RY, Zhao SP, Wang RQ, Huang RH, Li K. CNN3 Is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci , 2014, 10(4): 377-385. [58] JS, Noh SH, Lee JS, Kim JM, Hong KC, Lee YS. Effects of polymorphisms in the porcinemicroRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene , 2012, 506(1): 211-216. [59] Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH, Zhao SH. A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell DeathDis , 2013, 4(11): e934. [60] W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY, Zhao SH. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis , 2013, 4:e668. [61] HT, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell , 2008, 14(5): 369-381. [62] LJ, Zhou L, Jiang PY, Lu LN, Chen XN, Lan HY, Guttridge DC, Sun H, Wang HT. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther , 2012, 20(6): 1222-1233. [63] L, Wang LJ, Lu LN, Jiang PY, Sun H, Wang HT. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS ONE , 2012, 7(3): e33766. [64] CE, Wang B, Beyer C, Koh P, White L, Kantharidis P, Gregorevic P. TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem , 2011, 286(16): 13805-13814. [65] L, Wang LJ, Lu LN, Jiang PY, Sun H, Wang HT. A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem , 2012, 287(30): 25255-25265. [66] K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct , 2008, 33(2): 163-169. [67] MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol , 2006, 175(1): 77-85. [68] J, Dey BK, Layer R, Yan Z, Dutta A. Notch3 and Mef2c proteins are mutually antagonistic via Mkp1 protein and miR-1/206 microRNAs in differentiating myoblasts. J Biol Chem , 2012, 287(48): 40360-40370. [69] Y, Cao JH, Li XY, Zhao SH. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts. Cell Biochem Funct , 2011, 29(5): 378-383. [70] SP, Zhang J, Hou XH, Zan LS, Wang N, Tang ZL, Li K. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci , 2012, 8(4): 459-469. [71] WorkuD, RingsF, PhatsaraC, TholenE, SchellanderK, HoelkerM. Identification and expression profiling of microRNAsduring bovine oocyte maturation using heterologous approach. Mol Reprod Dev , 2009, 76(7): 665- 677. [72] EC. MicroRNA expression and function during porcine oocyte maturation and early embryonic development. USA: Iowa State University, 2012. [73] EC, Yang CX, Scanlon R, Selman B, Ross J. MicroRNA-21 and PDCD4 expression during in vitro maturation of porcine oocytes. Biol Reprod , 2010, 83: 322. [74] F, Li R,Pan ZX, Zhou B, Yu DB, Wang XG, Ma XS, Han J, Shen M, Liu HL. MiR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE , 2012, 7(6): e38640. [75] GJ, Zhang LX, Fang T, Zhang Q, Wu SG, Jiang Y, Sun H, Hu YL. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett , 2012, 586(19): 3263-3270. [76] Q, Sun HX, Jiang Y, Ding LJ, Wu SG, Fang T, Yan GJ, Hu YL. MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE , 2013, 8(3): e59667. [77] MM, Lü MR, Yao GD, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol , 2012, 26(7): 1129-1143. [78] SY, Linher-Melville K, Yang BB, Wu D, Li J. Micro- RNA378 (miR-378) regulates ovarian estradiol produc- [79] by targeting aromatase. Endocrinology , 2011, 152(10): 3941-3951. [80] M, Chen LG, Rassenti LZ, Ghia EM, Li HY, Jepsen K, Smith EN, Messer K, Frazer KA, Kipps TJ. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood , 2014, 124(1): 84-95. [81] IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M. Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas. EMBO Mol Med , 2009, 1(5): 288-295. [82] SK, Fassan M, Volinia S, Lovat F, Balatti V, Pekarsky Y, Croce CM. B-cell malignancies in microRNA Eμ-miR-17~92 transgenic mice. Proc Natl Acad Sci USA , 2013, 110(45): 18208-18213. [83] P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, de Stanchina E, D'Andrea A, Sander C, Ventura A. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev , 2009, 23(24): 2806-2811. [84] BY, Wang S, Mayr C, Bartel DP, Lodish HF. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA , 2007, 104(17): 7080-7085. [85] CC, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K. MiR-150 con-trols B cell differentiation by targeting the transcription factor c-Myb. Cell , 2007, 131(1): 146-159. [86] A, Schambach F, DeJong CS, Hammond SM, Reiner SL. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol , 2010, 40(1): 225-231. [87] RM, Kahn D, Gibson WSJ, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T celldevelopment. Immunity , 2010, 33(4): 607-619. [88] J, Xie DL, Zhong XP. MicroRNA-34a enhances T cell activation by targeting diacylglycerol kinase ζ. PLoS ONE , 2013, 8(10): e77983. [89] QJ, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell , 2007, 129(1): 147-161. [90] JR, Zheng GX, Burge CB, Sharp PA. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev , 2007, 21(5): 578-589. [91] 李明洲) |
[1] | 莫健新,王豪强,黄广燕,蔡更元,吴珍芳,张献伟. 微生物源果胶酶在猪PK15细胞中异源表达及其酶学性质分析[J]. 遗传, 2019, 41(8): 736-745. |
[2] | 黄羽,胡斯奇,郭斐. 应激颗粒与病毒的相互制约[J]. 遗传, 2019, 41(6): 494-508. |
[3] | 尹玲倩,冉金山,李菁菁,任鹏,张贤娴,刘益平. 禽类就巢性状的遗传调控[J]. 遗传, 2019, 41(5): 391-403. |
[4] | 薛鹏, 蒋涛, 沈兴家. m 6A修饰及其对病毒复制过程调控研究进展[J]. 遗传, 2019, 41(5): 404-412. |
[5] | 周李生, 赵为民, 涂枫, 吴云鹤, 任守文, 方晓敏. 猪乳头性状生理学和遗传学研究进展[J]. 遗传, 2019, 41(5): 384-390. |
[6] | 杨鑫宇,贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41(2): 137-145. |
[7] | 胡伟澎, 李佑平, 张秀清. 基于迁移学习的MHC-I型抗原表位呈递预测[J]. 遗传, 2019, 41(11): 1041-1049. |
[8] | 赵剑超, 柴壮, 郭诗萌, 刘忠华. 猪早期胚胎发育中SOX2基因启动子活性分析[J]. 遗传, 2019, 41(10): 950-961. |
[9] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
[10] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[11] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[12] | 冉茂良, 董莲花, 翁波, 曹蓉, 彭馥芝, 高虎, 罗荟, 陈斌. miR-362靶向ZNF644基因调控猪未成熟支持细胞的增殖和凋亡[J]. 遗传, 2018, 40(7): 572-584. |
[13] | 刘小民, 袁明龙. 昆虫天然免疫相关基因研究进展[J]. 遗传, 2018, 40(6): 451-466. |
[14] | 张秀妹, 高洁, 陈春红, 涂海军. 秀丽隐杆线虫固有免疫功能神经调控机制研究进展[J]. 遗传, 2018, 40(12): 1066-1074. |
[15] | 周欣,李伟芸,王红艳. MST1/2调控先天免疫的功能和机制[J]. 遗传, 2017, 39(7): 642-649. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: