[1] MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field? Photosynthesis and growth . Ann Bot , 2002, 89(7): 907-916. [2] V, Doskočilová A, Komis G, Šamaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv , 2014, 32(1): 2-11. [3] B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol , 2006, 9(2): 189-195. [4] KB, Foley RC, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol , 2002, 5(5): 430-436. [5] HT, Guo P, Xia XL, Yin WL. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta , 2011, 234(2): 229-241. [6] SK, Kim BG, Kwon TR, Jeong MJ, Park SR, Lee JW, Byun MO, Kwon HB, Matthews BF, Hong CB, Park SC. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice ( Oryza sativa L . ). J Biosci , 2011, 36(1): 139-151. [7] R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol , 2008, 59: 651-681. [8] N. Abscisic acid and abiotic stress signaling. Plant Signal Behav , 2007, 2(3): 135-138. [9] P, Hey SJ, Halford NG. The sucrose non-fermen-ting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot , 2011, 62(3): 883-893. [10] AK, Artz JD, Finerty P Jr, Lin YH, Amani M, Allali-Hassani A, Senisterra G, Vedadi M, Tempel W, Mackenzie F, Chau I, Lourido S, Sibley LD, Hui R. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nat Struct Mol Biol , 2010, 17(5): 596-601. [11] M, Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot , 2009, 60(13): 3645-3654. [12] Y, Li X, Tan H, Liu M, Zhao X, Wang J. Mol-ecular characterization of RsMPK2 , a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica . Plant Physiol Biochem , 2010, 48(10-11): 836- 844. [13] MCS, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol , 2010, 61: 621-649. [14] G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav , 2010, 5(11): 1370-1378. [15] R, Barkla BJ, Bohnert HJ, Pantoja O. Novel regulation of aquaporins during osmotic stress. Plant Physiol , 2004, 135(4): 2318-2329. [16] M, Bertrand C, Matton DP. Characterization of a fertilization-induced and developmentally regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt. Planta , 2002, 215(3): 485-493. [17] X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse-Delbart F, Lamaze T. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J , 1997, 12(5): 1103-1111. [18] GM, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res , 2006, 5(2): 396-403. [19] ZQ, Targolli J, Huang XQ, Wu R. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice ( Oryza sativa L.). Mol Breed , 2002, 10(1-2): 71-82. [20] K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem J , 2005, 388(Pt 1): 151-157. [21] PF, Shen QX, Ho TD. Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1 . Plant Mol Biol , 1994, 26(2): 617-630. [22] M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach ( Prunus persica ). Physiol Plant , 1999, 105(4): 600-608. [23] M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem , 2004, 42(7-8): 657-662. [24] JG, Olsen TM. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology , 1993, 30(3): 322-328. [25] PBK, Hong Z, Miao GH, Hu CAA, Verma DPS. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol , 1995, 108(4): 1387-1394. [26] JM, Walker JC. Plant protein kinase families and signal transduction. Plant Physiol , 1995, 108(2): 451-457. [27] AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem , 2011, 80: 769-795. [28] TJ. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant , 1997, 100(2): 291-296. [29] TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant , 1996, 97(4): 795-803. [30] SA, Close TJ. Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol , 1997, 137(1): 61-74. [31] 张红生) |