[1] SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol , 2011, 68(8): 979–984. [2] S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Paslier DL, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J. Identification and characterization of a spinal muscular atrophy-determining gene. Cell , 1995, 80(1): 155–165. [3] ZX, Lotti F, Dittmar K, Younis I, Wan LL, Kasim M, Dreyfuss G. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell , 2008, 133(4): 585–600. [4] TL, Kong LL, Wang XY, Osborne MA, Crowder ME, Van Meerbeke JP, Xu XX, Davis C, Wooley J, Goldhamer DJ, Lutz CM, Rich MM, Sumner CJ. SMN in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci , 2012, 32(25): 8703–8715. [5] N, Schlotter F, Lefebvre S, Dodré M, Méreau A, Soret J, Besse A, Barkats M, Bordonné R, Branlant C, Massenet S. Implication of the SMN complex in the biogenesis and steady state level of the Signal Recognition Particle. Nucleic Acids Res , 2013, 41(2): 1255–1272. [6] K, Davies KE. Spinal muscular atrophy. Semin Neurol , 2001, 21(2): 189–198. [7] J, Zhang QJ, Lin QF, Chen YF, Lin XZ, Lin MT, Murong SX, Wang N, Chen WJ. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy. Gene , 2013, 518(2): 325–329. [8] AD, Svendsen CN. Stem cell model of spinal muscular atrophy. Arch Neurol , 2010, 67(6): 665–669. [9] DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AHM. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet , 1997, 6(8): 1205–1214. [10] N, Inoue CN, Kondo Y, Iinuma K. Mitogenic action of lysophosphatidic acid in proximal tubular epithelial cells obtained from voided human urine. Clin Sci ( Lond ), 2000, 99(6): 561–567. [11] SU, Nelson WJ, Myers BD, Lemley KV. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol , 2003, 285(1): F40–F48. [12] A, Müller JIF, Golka K, Jedrusik P, Schulze H, Föllmann W. Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system. Arch Toxicol , 2000, 74(10): 618–626. [13] QJ, He J, Ni W, Lin X, Yao XP, Lin MT, Murong SX, Wang N, Chen WJ. Noninvasive urine-derived cell lines derived from neurological genetic patients. Neuroreport , 2013, 24(4): 161–166. [14] T, Benda C, Duzinger S, Huang YH, Li XY, Li YH, Guo XP, Cao GK, Chen S, Hao LL, Chan YC, Ng KM, Ho JC, Wieser M, Wu JY, Redl H, Tse HF, Grillari J, Grillari-Voglauer R, Pei DQ, Esteban MA. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol , 2011, 22(7): 1221–1228. [15] YT, Cai XJ, Wang LL, Liao BJ, Zhang H, Shan YL, Chen QY, Zhou TC, Li XR, Hou JD, Chen SB, Luo RP, Qin DJ, Pei DQ, Pan GJ. Generating a non-integrating human induced pluripotent stem cell bank from urine- erived cells. Plos One , 2013, 8(8): e70573. [16] YY, Luo RP, Xu Y, Cai XJ, Li WX, Tan KB, Huang JR, Dai Y. Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine. Rheumatol Int , 2013, 33(8): 2127–2134. [17] JM, Wang X, Zhang SL, Gu YJ, Yu L, Wu J, Gao TB, Chen F. Generation and characterization of human cryptorchid-specific induced pluripotent stem cells from urine. Stem Cells Dev , 2013, 22(5): 717–725. [18] LH, Wang LL, Huang WH, Su HX, Xue YT, Su ZH, Liao BJ, Wang HT, Bao XC, Qin DJ, He JF, Wu WT, So KF, Pan GJ, Pei DQ. Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods , 2013, 10(1): 84–89. |