遗传 ›› 2016, Vol. 38 ›› Issue (8): 688-699.doi: 10.16288/j.yczz.16-061
王云生
收稿日期:
2016-02-22
修回日期:
2016-04-10
出版日期:
2016-08-20
发布日期:
2016-06-29
作者简介:
王云生,博士,副教授,研究方向:群体遗传学,基因组学。E-mail:wys3269@126.com
基金资助:
Yunsheng Wang
Received:
2016-02-22
Revised:
2016-04-10
Online:
2016-08-20
Published:
2016-06-29
Supported by:
摘要: 作为群体遗传学一种新的表现形式,群体基因组学是将基因组概念和技术与群体遗传学理论体系相结合,通过覆盖全基因组范围内的多态位点的分布式样推测位点特异性效应和全基因组效应,从而提升人们对微进化的理解。近年来,随着第二代高通量测序技术的出现和改进,完成基因组测序的植物种类迅速增加,大规模的重测序也随之开展。与此同时,在一些尚未完成基因组测序的植物物种中,也开展了一些平行测序。这些重测序和平行测序极大地促进了群体基因组学的发展,加深了人们对相关植物种群在基因组水平上的遗传多样性、连锁不平衡水平、选择作用、群体历史及复杂性状的分子机理等群体基因组学方面的认识。本文简要介绍了群体基因组学的概念、研究方法等,重点综述了基于高通量测序的植物群体基因组学的研究动态,展望了植物群体基因组学的发展前景并讨论了存在的问题,以期为相关研究提供借鉴和参考。
王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699.
Yunsheng Wang. Research progress of plant population genomics based on high-throughput sequencing[J]. Hereditas(Beijing), 2016, 38(8): 688-699.
[1] Gulcher J, Stefansson K. Population genomics: Laying the groundwork for genetic disease modelling and targeting. Clin Chem Lab Med , 1998, 36(8): 523-527. [2] Goldstein DB, Weale ME. Population genomics: Linkage disequilibrium holds the key. Curr Biol , 2001, 11(14): R576-R579. [3] Jorde LB, Watkins WS, Bamshad MJ. Population genomics: A bridge from evolutionary history to genetic medicine. Hum Mol Genet , 2001, 10(20): 2199-2207. [4] Gibson G, Mackay TF. C. Enabling population and quantitative genomics. Genet Res , 2002, 80(1): 1-6. [5] Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics: Genome-wide sampling of insect populations. Annu Rev Entomol , 2001, 46(1): 441-469. [6] Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: From genotyping to genome typing. Nat Rev Genet , 2003, 4(12): 981-994. [7] Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol , 2014, 29(1): 51-63. [8] Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet , 2007, 24(3): 133-141. [9] Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, Corneveaux JJ, Pawlowski TL, Laub T, Nunn G, Stephan DA, Homer N, Huentelman MJ. Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods , 2008, 5(10): 887-893. [10] Cronn R, Liston A, Parks M, Gernandt DS, Shen RK, Mockler T. Multiplex sequencing of plant chloroplast genomes using solexa sequencing-by-synthesis technology. Nucleic Acids Res , 2008, 36(19): e122. [11] Stratton M. Genome resequencing and genetic variation. Nat Biotechnol , 2008, 26(1): 65-66. [12] Xu XY, Bai GH. Whole-genome resequencing: Changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breeding , 2015, 35: 33. [13] Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, Hahn MW, Nista PM, Jones CD, Kern AD, Dewey CN, Pachter L, Myers E, Langley CH. Population genomics: Whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol , 2007, 5(11): e310. [14] Yu P, Wang CH, Xu Q, Feng Y, Yuan XP, Yu HY, Wang YP, Tang SX, Wei XH. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics , 2011, 12: 372. [15] McHale LK, Haun WJ, Xu WW, Bhaskar PB, Anderson JE, Hyten DL, Gerhardt DJ, Jeddeloh JA, Stupar RM. Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol , 2012, 159(4): 1295-1308. [16] Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol , 2012, 12: 16. [17] Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Mitchell SE, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics , 2014, 15: 767. [18] Wen ZX, Boyse JF, Song QJ, Cregan PB, Wang DC. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics , 2015, 16: 671. [19] Wu J, Lenchik NI, Gerling IC. Approaches to reduce false positives and false negatives in the analysis of microarray data: applications in type 1 diabetes research. BMC Genomics , 2008, 9(Suppl. 2): S12. [20] Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet , 2011, 12(7): 499-510. [21] Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang AH, Guan JP, Fan DL, Weng QJ, Huang T, Dong GJ, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res , 2009, 19(6): 1068-1076. [22] Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform , 2009, 10(6): 609-618. [23] Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet , 2011, 12(11): 745-755. [24] Li YR, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, Jiang H, Albrechtsen A, Andersen G, Cao HZ, Korneliussen T, Grarup N, Guo YR, Hellman I, Jin X, Li QB, Liu JT, Liu X, Sparsø T, Tang MF, Wu HL, Wu RH, Yu C, Zheng HC, Astrup A, Bolund L, Holmkvist J, Jørgensen T, Kristiansen K, Schmitz O, Schwartz TW, Zhang XQ, Li RQ, Yang HM, Wang J, Hansen T, Pedersen O, Nielsen R, Wang J. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat Genet , 2010, 42(11): 969-972. [25] Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I. Associative transcriptomics of traits in the polyploid crop species Brassica napus . Nat Biotechnol , 2012, 30(8): 798-802. [26] Hodges E, Xuan ZY, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR. Genome-wide in situ exon capture for selective. Nat Genet , 2007, 39(12): 1522-1527. [27] Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M. Exome sequencing: Current and future perspectives. G3 (Bethesda) , 2015, 5(8): 1543-1550. [28] Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res , 2007, 17(2): 240-248. [29] Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One , 2008, 3(10): e3376. [30] Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: An inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS One , 2012, 7(5): e37135. [31] Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet , 2009, 10(1): 57-63. [32] Costa V, Angelini C, De Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol , 2010, 2010: 853916. [33] Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F. Transcriptome analysis using next-generation sequencing. Cur Opin Biotech , 2013, 24(1): 22-30. [34] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature , 2000, 405(6788): 827-836. [35] Shen YF, Wan ZZ, Coarfa C, Drabek R, Chen L, Ostrowski EA, Liu Y, Weinstock GM, Wheeler DA, Gibbs RA, Yu FL. next-generation resequencing data A SNP discovery method to assess variant allele probability from next-generation resequencing data. Genome Res , 2010, 20(2): 273- 280. [36] O'Neil ST, Dzurisin JDK, Carmichael RD, Lobo NF, Emrich SJ, Hellmann JJ. RPeoseaprcuh alratictleion-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon . BMC Genomics , 2010, 11: 310. [37] Davey JW, Blaxter ML. RADSeq: Next-generation population genetics. Brief Funct Genomics , 2010, 9(5-6): 416- 423. [38] DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet , 2011, 43(5): 491-498. [39] Hohenlohe PA, Catchen J, Cresko WA. Population genomic analysis of model and nonmodel organisms using sequenced RAD tags. In: Pompanon F, Bonin A, eds. Data Production and Analysis in Population Genomics: Methods in Molecular Biology. New York: Humana Press, 2012, 888: 235-260. [40] Wang J, Street NR, Scofield DG, Ingvarsson PK. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus Species. Genetics , 2015, 202(3): 1185-1200. [41] Wang LH, Han XL, Zhang YX, Li DH, Wei X, Ding X, Zhang XR. Deep resequencing reveals allelic variation in Sesamum indicum . BMC Plant Biol , 2014, 14: 225. [42] Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, Chai Y, Yang LF, Liu KY, Lu HY, Zhu CR, Lu YQ, Zhou CC, Fan DL, Wg QJ, Guo YL, Huang T, Zhang L, Lu TT, Feng Q, Hao HF, Liu HK, Lu P, Zhang N, Li YH, Guo EH, Wang SJ, Wang SY, Liu JR, Zhang WF, Chen GQ, Zhang BJ, Li W, Wang YF, Li HQ, Zhao BH, Li JY, Diao XM, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica ). Nat Genet , 2013, 45(8): 957-964. [43] Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B. Draft genome sequence of chickpea ( Cicer arietinum ) provides a resource for trait improvement. Nat Biotechnol , 2013, 31(3): 240- 246. [44] Xu X, Liu X, Ge S, Jensen JD, Hu FY, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li JX, He WM, Zhang GJ, Zheng XM, Zhang FM, Li YR, Yu C, Kristiansen K, Zhang XQ, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying gronomically important genes. Nat Biotechnol , 2012, 30(1): 105-111. [45] Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B, Li J, Jian M, Wang J, Shao GH, Wang J, Sun SSM, Zhang GY. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet , 2010, 42(12): 1053-1059. [46] Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Yu YJ, Shu LP, Zhao YJ, Ma YM, Fang C, Shen YT, Liu TF, Li CC, Li Q, Wu M, Wang M, Wu YS, Dong Y, Wan WT, Wang X, Ding ZL, Gao YD, Xiang H, Zhu BG, Lee SH, Wang W, Tian ZX. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol , 2015, 33(4): 408-416. [47] Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES. A first-generation haplotype map of maize. Science , 2009, 326(5956): 1115-1117. [48] Lai JS, Li RQ, Xu X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang J, Dai JR, Schnable PS, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet , 2010, 42(11): 1027- 1030. [49] Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY, Zheng Y, Mao LY, Ren Y, Wang ZW, Min JM, Guo XS, Murat F, Ham BK, Zhang ZL, Gao S, Huang MY, Xu YM, Zhong SL, Bombarely A, Mueller LA, Zhao H, He HJ, Zhang Y, Zhang ZH, Huang SW, Tan T, Pang EL, Lin K, Hu Q, Kuang HH, Ni PX, Wang B, Liu J, Kou QH, Hou WJ, Zou XH, Jiang J, Gong GY, Klee K, Schoof H, Huang Y, Hu XS, Dong SS, Liang DQ, Wang J, Wu K, Xia Y, Zhao X, Zheng ZQ, Xing M, Liang XM, Huang BQ, Lv T, Wang JY, Yin Y, Yi HP, Li RQ, Wu MZ, Levi A, Zhang XP, Giovannoni JJ, Wang J, Li YF, Fei ZJ, Xu Y. The draft genome of watermelon ( Citrullus lanatus ) and resequencing of 20 diverse accessions. Nat Genet , 2013, 45(1): 51-58. [50] Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfortg J, Bataillon T, Young ND, Tiffin P. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula . Proc Natl Acad Sci USA , 2011, 108(42): E864-E870. [51] Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen HM, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thalian a. Science , 2007, 317(5836): 338-342. [52] Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao YJ, Tam A, Wang SC, Friedmann M, Birol I, Jones SJM, Cronk QCB, Douglas CJ. SNP discovery in black cottonwood ( Populus trichocarpa ) by population transcriptome resequencing. Mol Ecol Resour , 2011, 11(Suppl. 1): 81-92. [53] The 100 Tomato Genome Sequencing Consortium, Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang GY, Li N, Mao LK, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swason-Wagner R, van Leeuwen H, van Ham RCHJ, Fito L, Guigner L, Sevilla M, Ellul P, Ganko EW, Kapur A, Reclus E, de Geus B, van de Geest H, te Lintel Hekkert B, van Haarst JC, Smits L, Koops A, Sanchez-Perez GS, van Heusden AW, Visser R, Quan ZW, Min JM, Liao L, Wang XL, Wang GB, Yue Z, Yang XH, Xu N, Schranz E, Smets EF, Vos RA, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen WH, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters SA. Exploring genetic variation in the tomato ( Solanum section Lycopersicon ) clade by whole-genome sequencing. Plant J , 2014, 80(1): 136-148. [54] Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai JS, Li M, Liu X, Lu YL, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhäjärvi T, Rong TZ, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang ZW, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang GY, Xu YB, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet , 2012, 44(7): 803-807. [55] Zhang ZH, Mao LY, Chen HM, Bu FJ, Li GC, Sun JJ, Li S, Sun HH, Jiao C, Blakely R, Pan JS, Cai R, Luo RB, van de Peer Y, Jacobsen E, Fei ZJ, Huang SW. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell , 2015, 27(6): 1595-1604. [56] Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol , 2005, 57(4): 461-485. [57] Huang XH, Kurata N, Wei XH, Wang ZX, Wang AH, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ, Zhou CC, Fan DL, Weng QJ, Zhu CR, Huang T, Zhang L, Wang YC, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan XP, Xu Q, Dong GJ, Zhan QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q, Qian Q, Li JY, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature , 2012, 490(7421): 497-501. [58] Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, Du YC, Li Y, Lin T, Yuan JH, Yang XY, Chen JF, Chen HM, Xiong XY, Huang K, Fei ZJ, Mao LY, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang ZH, Huang SW. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet , 2013, 45(12): 1510-1518. [59] Paape T, Zhou P, Branca A, Briskine R, Young N, Tiffin P. Fine-scale population recombination rates, hotspots, and correlates of recombination in the Medicago truncatula Genome. Genome Biol Evol , 2012, 4(5): 726-737. [60] Hellsten U, Wright KM, Jenkins J, Shu SQ, Yuan YW, Wessler SR, Schmutz J, Willis JH, Rokhsar DS. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci USA , 2013, 210(48): 19478-19482. [61] Buerkle CA, Gompert Z, Parchman TL. The n = 1 constraint in population genomics. Mol Ecol , 2011, 20(8): 1575-1581. [62] Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, Holderegger R, Widmer A. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol , 2013, 22(22): 5594-5607. [63] Turner TL, Bourne EC, von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet , 2010, 42(3): 260-263. [64] Puzey J, Vallejo-Marín M. Genomics of invasion: Diversity and selection in introduced populations of monkeyflowers ( Mimulus guttatus ). Mol Ecol , 2014, 23(18): 4472-4485. [65] Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai JS, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang GY, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J. Comparative population genomics of maize domestication and improvement. Nat Genet , 2012, 44(7): 808-811. [66] Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu SQ, Song QJ, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao DY, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia GF, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet , 2014, 46(7): 707-713. [67] Cao K, Zheng ZJ, Wang LR, Liu X, Zhu GR, Fang WC, Cheng SF, Zeng P, Chen CW, Wang XW, M, Zhong X, Wang XL, Zhao P, Bian C, Zhu YL, Zhang JH, Ma GS, Chen CX, Li YJ, Hao FG, Li Y, Huang GD, Li YX, Li HY, Guo J, Xu X, Wang J. Comparative population genomics reveals the domestication history of the peach, Prunus persica , and human influences on perennial fruit crops. Genome Biol , 2014, 15(7): 415. [68] Jiao YP, Zhao HN, Ren LH, Song WB, Zeng B, Guo JJ, Wang BB, Liu ZP, Chen J, Li W, Zhang M, Xie SJ, Lai JS. Genome-wide genetic changes during modern breeding of maize. Nat Genet , 2012, 44(7): 812-815. [69] Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood ( Populus trichocarpa ). Mol Ecol , 2014, 23(10): 2486- 2499. [70] Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang AH, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet , 2010, 42(11): 961-969. [71] Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA, Gunter LE, Ranjan P, Vining K, Pomraning KR, Wilhelm LJ, Pellegrini M, Mockler TC, Freitag M, Geraldes A, El-Kassaby YA, Mansfield SD, Cronk QCB, Douglas CJ, Strauss SH, Rokhsar D, Tuskan GA. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa . New Phytol , 2012, 196(3): 713-725. [72] Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet , 2011, 43(10): 956-963. [73] Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, Chen CL, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen JJ, Gao S, Xing F, Lan H, Chang JW, Ge XH, Lei Y, Hu Q, Miao Y, Wang L, Xiao SX, Biswas MK, Zeng WF, Guo F, Cao HB, Yang XM, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang ZH, Guo WW, Kuang HH, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ. The draft genome of sweet orange ( Citrus sinensis ). Nat Genet , 2013, 45(1): 59-66. [74] Wang YS, Lin SQ. Resequencing 10 accession wild and 10 accession cultivated loquat ( Eriobotrya japonica ): SNP marker explored and ued for preliminary analysis of population genomics. In: Proceedings of the Sixth National Symposium on Loquat (Abstracts). Beijing: Chinese Society for Horticultural Science, 2013: 34-40. 王云生, 林顺权. RAD-tag重测序10份野生和10份栽培枇杷: SNP标记开发及初步群体基因组学分析. 见: 第六届全国枇杷学术研讨会论文(摘要)集. 北京: 中国园艺学会, 2013: 34-40. [75] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science , 1996, 273(5281): 1516-1517. [76] Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet , 2005, 6(2): 95-108. [77] Flint-Garcia SA. Genetics and consequences of crop domestication. J Agric Food Chem , 2013, 61(35): 8267-8276. [78] Robinson MR, Wray NR, Visscher PM. Explaining additional genetic variantion in complex traits. Trends Genet , 2014, 30(4): 124-132. [79] Zhang H, Wang ZP, Wang SZ, Li H. Progress of genome wide association study in domestic animals. J Anim Sci Biotechnol , 2012, 3: 26. [80] Zhou JP, Pei ZY, Chen YB, Chen RS. Strategies of genome-wide association study based on high-throughput sequencing. Hereditas (Beijing) , 2014, 36(11): 1099-1111. 周家蓬, 裴智勇, 陈禹保, 陈润生. 基于高通量测序的全基因组关联研究策略. 遗传, 2014, 36(11): 1099-1111. [81] Xu J, Yuan YB, Xu YB, Zhang GY, Guo XS, Wu FK, Wang Q, Rong TZ, Pan GT, Cao MJ, Tang QL, Gao SB, Liu YX, Wang J, Lan H, Lu YL. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol , 2014, 14: 83. [82] Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA , 2013, 110(2): 453-458. (责任编委: 赵方庆) |
[1] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[2] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[3] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[4] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[5] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[6] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[7] | 胡健,周逸人,丁佳琳,王志远,刘凌,王业开,娄慧玲,乔守怡,吴燕华. ABO血型综合实验基因分型技术简化及其群体遗传分析拓展[J]. 遗传, 2017, 39(5): 423-429. |
[8] | 梁素芸,周正奎,侯水生. 基于测序技术的畜禽基因组学研究进展[J]. 遗传, 2017, 39(4): 276-292. |
[9] | 袁金红, 李俊华, 袁娇娇, 贾克利, 李书粉, 邓传良, 高武军. 基于全基因组测序的MutMap方法在正向遗传学 研究中的应用[J]. 遗传, 2017, 39(12): 1168-1177. |
[10] | 胡鹏飞, 徐佳萍, 艾成, 邵秀娟, 王洪亮, 董依萌, 崔学哲, 杨福合, 邢秀梅. 利用全基因组重测序分析鹿茸重量相关基因[J]. 遗传, 2017, 39(11): 1090-1101. |
[11] | 高飞雁, 李玲, 王教瑜, 王艳丽, 孙国昌. PEX基因在过氧化物酶体形成及真菌致病性中的作用[J]. 遗传, 2017, 39(10): 908-917. |
[12] | 王钦美, 崔建国, 于长志, 张智, 吴月亮, 张丽杰, 林梅. 案例教学在林学专业遗传学教学中的应用[J]. 遗传, 2017, 39(10): 939-946. |
[13] | 徐赫鸣,谢泽雄,刘夺,吴毅,李炳志,元英进. 酿酒酵母染色体设计与合成研究进展[J]. 遗传, 2017, 39(10): 865-876. |
[14] | 许崇凤,段子渊. 中华民族永生细胞库在生命科学研究中的支撑作用[J]. 遗传, 2017, 39(1): 75-86. |
[15] | 高峰, 李海鹏. 群体遗传学模拟软件应用现状[J]. 遗传, 2016, 38(8): 707-717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: