遗传 ›› 2021, Vol. 43 ›› Issue (3): 203-214.doi: 10.16288/j.yczz.20-320
收稿日期:
2020-12-01
出版日期:
2021-03-16
发布日期:
2021-01-14
基金资助:
Yige Li1,2,3(), Dandan Zhang1,2,3()
Received:
2020-12-01
Online:
2021-03-16
Published:
2021-01-14
Supported by:
摘要:
结直肠癌(colorectal cancer, CRC)是受遗传与环境因素共同影响的复杂疾病,其中遗传因素发挥重要作用。至今,全基因组关联研究(genome-wide association studies, GWAS)已经发现了大量与结直肠癌风险相关的遗传变异。随之而来的后GWAS时代,越来越多的研究侧重于利用多组学数据和功能实验对潜在的致病位点进行解析。分析表明绝大多数风险单核苷酸多态性(single nucleotide polymorphism, SNP)位于非编码区,可能通过影响转录因子结合、表观遗传修饰、染色质可及性、基因组高级结构等,调控靶基因表达。本文对后GWAS时代结直肠癌致病位点的机制研究进行综述,阐述了后GWAS对于理解结直肠癌分子机制的重要意义,并探讨了结直肠癌GWAS的应用和前景,为实现GWAS成果转化提供参考。
李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展[J]. 遗传, 2021, 43(3): 203-214.
Yige Li, Dandan Zhang. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS[J]. Hereditas(Beijing), 2021, 43(3): 203-214.
图1
后GWAS研究策略 GWAS-SNP功能研究的一般策略是:(1)对结直肠癌相关位点进行基因型填补,获得连锁不平衡区域内的所有位点;(2)整合转录组、表观遗传等多组学数据对相关位点进行注释,筛选潜在功能位点并对候选位点做进一步的功能注释。如ENCODE、Roadmap等数据库提供了甲基化、组蛋白修饰、染色质开放程度等信息;表达数量性状基因座(expression quantitative trait loci, eQTL)数据有助于识别SNP可能影响的靶基因;Cistrome、JASPAR等数据库可用于预测SNP是否影响转录因子结合等;(3)利用体内外实验阐明风险位点的致病机制。常见的实验方法有:荧光素酶报告基因实验、ChIP-seq、染色体构象捕获技术、基因敲除等。参考文献[5]绘制。"
表2
后GWAS实验性研究阐明的非编码SNP作用机制"
功能 | SNP | 位置 | 靶基因 | 实验 | 参考文献 |
---|---|---|---|---|---|
影响与转录因子的 结合 | rs13278062 | DR4启动子区 | DR4 | CRISPR/Cas9、ChIP、流式分析等实验 | [40] |
rs11777210 | KBTBD11内含子区 | KBTBD11 | 凝胶迁移、荧光素酶报告基因等实验 | [42] | |
rs55829688 | lncRNA-GAS5 | GAS5 | 荧光素酶报告基因、凝胶迁移、流式分析、迁移侵袭等实验 | [44] | |
rs2238126 | ETV6内含子区 | ETV6 | 荧光素酶报告基因、凝胶迁移实验、ChIP | [45] | |
rs27437 | SLC22A5上游 | SLC22A5 | 荧光素酶报告基因实验 | [46] | |
rs2333227 | MPO启动子区 | MPO | ChIP、CRISPR/Cas9、克隆形成、侵袭迁移、裸鼠体内成瘤等实验 | [47] | |
rs420038 | SLC22A3内含子区 | SLC22A3 | 荧光素酶报告基因、流式分析、细胞增殖等实验 | [48] | |
影响启动子增强子 相互作用 | rs61926301 | ATF1启动子区 | ATF1 | 荧光素酶报告基因、凝胶迁移、ChIP、3C、裸鼠异种移植体外等实验 | [41] |
rs7959129 | ATF1内含子区 | ||||
rs7198799 | CDH1内含子区 | ZFP90 | 荧光素酶报告基因、凝胶迁移、ChIP、4C测序、3C-qPCR、小鼠实验等 | [43] | |
rs12263636 | ZMIZ1内含子区 | RPS24 | 荧光素酶报告基因实验 | [49] | |
rs174575 | FADS2内含子区 | FADS2, AP002754.2 | 荧光素酶报告基因、凝胶迁移、3C、裸鼠体内异种移植等实验 | [50] | |
作为绝缘子发挥远 距离调控作用 | rs6702619 | LPPR4与PALMD 基因间 | GNAS等 | ChIP、增强子阻断、3C测序等实验 | [51] |
影响与miRNA的 结合 | rs11169571 | ATF1 3ʹUTR | ATF1 | 荧光素酶报告基因实验 | [38] |
rs3814058 | PXR 3ʹUTR | PXR | 荧光素酶报告基因实验 | [52] | |
rs12915554 | GREM1 3ʹUTR | GREM1 | 荧光素酶报告基因实验 | [53] | |
rs1062044 | LAMC1 3ʹUTR | LAMC1 | 荧光素酶报告基因实验 | [54] | |
rs5030740 | RPA1 3ʹUTR | RPA1 | 荧光素酶报告基因、细胞增殖、流式分析等实验 | [55] | |
rs6504593 | IGF2BP1 3ʹUTR | IGF2BP1 | 荧光素酶报告基因、细胞增殖、流式分析等实验 | [56] | |
rs1590 | TGFBR1 3ʹUTR | TGFBR1 | 荧光素酶报告基因 | [57] | |
rs1317082 | CCSlnc362 | CCSlnc362 | 荧光素酶报告基因、细胞增殖、流式分析等实验 | [58] | |
rs664589 | lncRNA-MALAT1 | MALAT1 | 荧光素酶报告基因实验 | [59] | |
rs12982687 | lncRNA-UCA1 | UCA1 | 荧光素酶报告基因、细胞增殖、侵袭迁移等实验 | [60] | |
影响与靶基因的结合 | rs35301225 | miR-34 | E2F1 | 荧光素酶报告基因、细胞增殖等实验 | [61] |
[1] | Bray F , Ferlay J , Soerjomataram I , Siegel RL , Torre LA , Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin , 2018, 68(6): 394- 424. |
[2] | Wu CX, Gu K, Gong YM, Zheng RS, Wang SM, Chen R, Zhang SW, Shi Y, Wei WQ, Fu C, He J. Analysis of incidence and mortality of colorectal cancer in China, 2015, China Oncol, 2020, 30(4): 241- 245. |
吴春晓, 顾凯, 龚杨明, 郑荣寿, 王少明, 陈茹, 张思维, 施燕, 魏文强, 付晨, 赫捷. 2015年中国结直肠癌发病和死亡情况分析. 中国癌症杂志, 2020, 30(4): 241- 245. | |
[3] | Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London, England) , 2019, 394(10207): 1467- 1480. |
[4] | Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med , 2000, 343(2): 78- 85. |
[5] | Farashi S, Kryza T, Clements J, Batra J. Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer , 2019, 19(1): 46- 59. |
[6] | Liang WQ, Hou Y, Zhao CY. Schizophrenia-associated single nucleotide polymorphisms affecting microRNA function. Hereditas(Beijing) , 2019, 41(8): 677- 685. |
梁文权, 侯豫, 赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展. 遗传, 2019, 41(8): 677- 685. | |
[7] | Cao L, Li ZQ, Shi YY, Liu Y. Telomere length and type 2 diabetes: Mendelian randomization study and polygenic risk score analysis. Hereditas(Beijing) , 2020, 42(9): 882- 888. |
曹岚, 李志强, 师咏勇, 刘赟. 端粒长度与2型糖尿病:孟德尔随机化研究与多基因风险评分分析. 遗传, 2020, 42(9): 882- 888. | |
[8] | Tomlinson I , Webb E , Carvajal-Carmona L , Broderick P , Kemp Z , Spain S , Penegar S , Chandler I , Gorman M , Wood W , Barclay E , Lubbe S , Martin L , Sellick G , Jaeger E , Hubner R , Wild R , Rowan A , Fielding S , Howarth K , Consortium C , Silver A , Atkin W , Muir K , Logan R , Kerr D , Johnstone E , Sieber O , Gray R , Thomas H , Peto J , Cazier JB , Houlston R. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet , 2007, 39(8): 984- 988. |
[9] | Zanke BW , Greenwood CMT , Rangrej J , Kustra R , Tenesa A , Farrington SM , Prendergast J , Olschwang S , Chiang T , Crowdy E , Ferretti V , Laflamme P , Sundararajan S , Roumy S , Olivier JF , Robidoux F , Sladek R , Montpetit A , Campbell P , Bezieau S , O'Shea AM , Zogopoulos G , Cotterchio M , Newcomb P , McLaughlin J , Younghusband B , Green R , Green J , Porteous MEM , Campbell H , Blanche H , Sahbatou M , Tubacher E , Bonaiti-Pellie C , Buecher B , Riboli E , Kury S , Chanock SJ , Potter J , Thomas G , Gallinger S , Hudson TJ , Dunlop MG. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet , 2007,39(8): 989- 994. |
[10] | Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, Jaeger E, Vijayakrishnan J, Kemp Z, Gorman M, Chandler I, Papaemmanuil E, Penegar S, Wood W, Sellick G, Qureshi M, Teixeira A, Domingo E, Barclay E, Martin L, Sieber O, CORGI Consortium, Kerr D, Gray R, Peto J, Cazier JB, Tomlinson I, Houlston RS. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk . Nat Genet , 2007, 39(11): 1315- 1317. |
[11] | Freedman ML , Monteiro ANA , Gayther SA , Coetzee GA , Risch A , Plass C , Casey G , De Biasi M , Carlson C , Duggan D , James M , Liu PY , Tichelaar JW , Vikis HG , You M , Mills IG. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet , 2011,43(6): 513- 518. |
[12] | Edwards SL , Beesley J , French JD , Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet , 2013,93(5): 779- 797. |
[13] | Liu JY, Zhang LN, Zheng H. Research strategy of the case-control post-genome-wide association study. Tianjin Med J , 2015, (7): 810- 812,813. |
刘佳宇, 张丽娜, 郑红. 后全基因组病例对照研究时代的功能研究策略. 天津医药, 2015, (7): 810- 812, 813. | |
[14] | Lu YC, Kweon SS, Cai QY, Tanikawa C, Shu XO, Jia WH, Xiang YB, Huyghe JR, Harrison TA, Kim J, Shin A, Kim DH, Matsuo K, Jee SH, Guo XY, Wen WQ, Shi JJ, Li BS, Wang N, Shin MH, Li HL, Ren ZF, Oh JH, Oze I, Ahn YO, Jung KJ, Gao J, Gao YT, Pan ZZ, Kamatani Y, Chan AT, Gsur A, Hampe J, Le Marchand L, Li L, Lindblom A, Moreno V, Newcomb PA, Offit K, Pharoah PDP, van Duijnhoven FJB, Van Guelpen B, Vodicka P, Weinstein SJ, Wolk A, Wu AH, Hsu L, Zeng YX, Long JR, Peters U, Matsuda K, Zheng W. Identification of novel loci and new risk variant in known loci for colorectal cancer risk in east Asians. Cancer Epidemiol Biomarkers Prev , 2020, 29(2): 477- 486. |
[15] | Lu YC , Kweon SS , Tanikawa C , Jia WH , Xiang YB , Cai QY , Zeng CJ , Schmit SL , Shin A , Matsuo K , Jee SH , Kim DH , Kim J , Wen WQ , Shi JJ , Guo XY , Li BS , Wang N , Zhang B , Li XX , Shin MH , Li HL , Ren ZF , Oh JH , Oze I , Ahn YO , Jung KJ , Conti DV , Schumacher FR , Rennert G , Jenkins MA , Campbell PT , Hoffmeister M , Casey G , Gruber SB , Gao J , Gao YT , Pan ZZ , Kamatani Y , Zeng YX , Shu XO , Long JR , Matsuda K , Zheng W. Large-scale genome-wide association study of East Asians identifies loci associated with risk for colorectal cancer. Gastroenterology , 2019,156(5): 1455- 1466. |
[16] | Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu CH, Jeon J, Edlund CK, Greenside P, Wainberg M, Schumacher FR, Smith JD, Levine DM, Nelson SC, Sinnott-Armstrong NA, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Bamia C, Banbury BL, Baron JA, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Chirlaque MD, Cho SH, Connolly CM, Cross AJ, Cuk K, Curtis KR, de la Chapelle A, Doheny KF, Duggan D, Easton DF, Elias SG, Elliott F, English DR, Feskens EJM, Figueiredo JC, Fischer R, FitzGerald LM, Forman D, Gala M, Gallinger S, Gauderman WJ, Giles GG, Gillanders E, Gong J, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hampel H, Harlid S, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Hunter DJ, Ibañez-Sanz G, Idos GE, Ingersoll R, Jackson RD, Jacobs EJ, Jenkins MA, Joshi AD, Joshu CE, Keku TO, Key TJ, Kim HR, Kobayashi E, Kolonel LN, Kooperberg C, Kühn T, Küry S, Kweon SS, Larsson SC, Laurie CA, Le Marchand L, Leal SM, Lee SC, Lejbkowicz F, Lemire M, Li CI, Li L, Lieb W, Lin Y, Lindblom A, Lindor NM, Ling H, Louie TL, Männistö S, Markowitz SD, Martín V, Masala G, McNeil CE, Melas M, Milne RL, Moreno L, Murphy N, Myte R, Naccarati A, Newcomb PA, Offit K, Ogino S, Onland-Moret NC, Pardini B, Parfrey PS, Pearlman R, Perduca V, Pharoah PDP, Pinchev M, Platz EA, Prentice RL, Pugh E, Raskin L, Rennert G, Rennert HS, Riboli E, Rodríguez-Barranco M, Romm J, Sakoda LC, Schafmayer C, Schoen RE, Seminara D, Shah M, Shelford T, Shin MH, Shulman K, Sieri S, Slattery ML, Southey MC, Stadler ZK, Stegmaier C, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Thomas SS, Toland AE, Trichopoulou A, Ulrich CM, Van Den Berg DJ, van Duijnhoven FJB, Van Guelpen B, van Kranen H, Vijai J, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Win AK, Wolf CR, Wolk A, Woods MO, Wu AH, Zaidi SH, Zanke BW, Zhang Q, Zheng W, Scacheri PC, Potter JD, Bassik MC, Kundaje A, Casey G, Moreno V, Abecasis GR, Nickerson DA, Gruber SB, Hsu L, Peters U. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet , 2019, 51(1): 76- 87. |
[17] | Qu XF, Wang MY, Cai SJ, Wei QY. Research progress and prospect of genome-wide association analysis of colorectal cancer. Chin J Oncol Prev Treat , 2019, 11(1): 5- 12. |
屈晓飞, 王梦筠, 蔡三军, 魏庆义. 结直肠癌全基因组关联分析研究进展及展望. 中国癌症防治杂志, 2019, 11(1): 5- 12. | |
[18] | Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, Farrington S, Svinti V, Palles C, Orlando G, Sud A, Holroyd A, Penegar S, Theodoratou E, Vaughan-Shaw P, Campbell H, Zgaga L, Hayward C, Campbell A, Harris S, Deary IJ, Starr J, Gatcombe L, Pinna M, Briggs S, Martin L, Jaeger E, Sharma-Oates A, East J, Leedham S, Arnold R, Johnstone E, Wang HT, Kerr D, Kerr R, Maughan T, Kaplan R, Al-Tassan N, Palin K, Hänninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, Sarin AP, Eriksson JG, Rissanen H, Knekt P, Pukkala E, Jousilahti P, Salomaa V, Ripatti S, Palotie A, Renkonen-Sinisalo L, Lepistö A, Böhm J, Mecklin JP, Buchanan DD, Win AK, Hopper J, Jenkins ME, Lindor NM, Newcomb PA, Gallinger S, Duggan D, Casey G, Hoffmann P, Nöthen MM, Jöckel KH, Easton DF, Pharoah PDP, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai Z, Muir K, Pashayan N, consortium P, Harkin A, Allan K, McQueen J, Paul J, Iveson T, Saunders M, Butterbach K, Chang-Claude J, Hoffmeister M, Brenner H, Kirac I, Matosevic P, Hofer P, Brezina S, Gsur A, Cheadle JP, Aaltonen LA, Tomlinson I, Houlston RS, Dunlop MG. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun , 2019, 10(1): 2154. |
[19] | George Priya Doss C, Rajasekaran R , Arjun P , Sethumadhavan R. Prioritization of candidate SNPs in colon cancer using bioinformatics tools: an alternative approach for a cancer biologist. Interdiscip Sci , 2010,2(4): 320- 346. |
[20] | Steck SE , Butler LM , Keku T , Antwi S , Galanko J , Sandler RS , Hu JJ. Nucleotide excision repair gene polymorphisms, meat intake and colon cancer risk. Mutat Res , 2014,762: 24- 31. |
[21] | Theodoratou E , Farrington SM , Timofeeva M , Din FV , Svinti V , Tenesa A , Liu T , Lindblom A , Gallinger S , Campbell H , Dunlop MG. Genome-wide scan of the effect of common nsSNPs on colorectal cancer survival outcome. Br J Cancer , 2018,119(8): 988- 993. |
[22] | Zhang MZ, Huang C, Wang ZY, Lv HB, Li XM. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract . BMC Mol Cell Biol , 2020, 21( 1): 12. |
[23] | Timofeeva MN , Kinnersley B , Farrington SM , Whiffin N , Palles C , Svinti V , Lloyd A , Gorman M , Ooi LY , Hosking F , Barclay E , Zgaga L , Dobbins S , Martin L , Theodoratou E , Broderick P , Tenesa A , Smillie C , Grimes G , Hayward C , Campbell A , Porteous D , Deary IJ , Harris SE , Northwood EL , Barrett JH , Smith G , Wolf R , Forman D , Morreau H , Ruano D , Tops C , Wijnen J , Schrumpf M , Boot A , Vasen HFA , Hes FJ , van Wezel T , Franke A , Lieb W , Schafmayer C , Hampe J , Buch S , Propping P , Hemminki K , Försti A , Westers H , Hofstra R , Pinheiro M , Pinto C , Teixeira M , Ruiz-Ponte C , Fernández-Rozadilla C , Carracedo A , Castells A , Castellví-Bel S , Campbell H , Bishop DT , Tomlinson IPM , Dunlop MG , Houlston RS. Recurrent coding sequence variation explains only a small fraction of the genetic architecture of colorectal cancer. Sci Rep , 2015,5: 16286. |
[24] | Huang QT, Li Q, Zhang YB. Linking chromatin conformation to gene function. Hereditas(Beijing) , 2020, 42(1): 1- 17. |
黄其通, 李清, 张玉波. 染色质构象与基因功能. 遗传, 2020, 42(1): 1- 17. | |
[25] | Gorkin DU, Qiu YJ, Hu M, Fletez-Brant K, Liu T, Schmitt AD, Noor A, Chiou J, Gaulton KJ, Sebat J, Li Y, Hansen KD, Ren B. Common DNA sequence variation influences 3-dimensional conformation of the human genome. Genome Biol , 2019, 20( 1): 255. |
[26] | Lv HQ, Hao LL, Liu EH, Wu ZF, Han JQ, Liu Y. Current status and future perspectives in bioinformatical analysis of Hi-C data. Hereditas(Beijing) , 2020, 42(1): 87- 99. |
吕红强, 郝乐乐, 刘二虎, 吴志芳, 韩九强, 刘源. 基于生物信息学的Hi-C研究现状与发展趋势. 遗传, 2020, 42(1): 87- 99. | |
[27] | Kang BW, Jeon HS, Chae YS, Lee SJ, Park JS, Choi GS, Kim JG. Impact of genetic variation in microRNA-binding site on susceptibility to colorectal cancer. Anticancer Res , 2016, 36(7): 3353- 3361. |
[28] | Yang ML, Huang Z, Wu LN, Wu R, Ding HX, Wang BG. lncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility . Biosci Rep , 2019, 39(7): BSR20190708. |
[29] | Jia WR , Zeng LY , Luo SQ , Bai F , Zhong R , Wu L , Huang GL , Pu XX. Association of microRNA-423 rs6505162 C>A polymorphism with susceptibility and metastasis of colorectal carcinoma . Medicine , 2018, 97(6) e9846. |
[30] | Chen YT , Du ML , Chen W , Zhu LJ , Wu CY , Zhang ZD , Wang ML , Chu HY , Gu D , Chen JF. Polymorphism rs 2682818 in miR-618 is associated with colorectal cancer susceptibility in a Han Chinese population . Cancer Med , 2018, 7(4): 1194- 1200. |
[31] | He HJ , Lei L , Chen EF , Xu XN , Wang LL , Pan JQ , Yang FF , Wang M , Dong J , Yang J. The screening of the functional microRNA binding site SNPs in sporadic colorectal cancer genes. Cancer Biol Ther , 2017,18(6): 407- 413. |
[32] | Qiu QC, Liu J, Shao JF, Lou XY, Chen C, Lin BY. Target-resequencing to identify microRNA-associated SNP and predict the effect of SNP on microRNA function in colorectal cancer patients. Chin J Oncol , 2015, 37(10): 759- 763. |
[33] | Li JY, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong YJ, Lou J, Ke JT, Zhang Y, Tian JB, Zou DY, Peng XT, Chang J, Gong J, Zhong R, Zhou XB, Miao XP. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population . Mol Carcinog , 2017, 56(7): 1798- 807. |
[34] | Shen N , Li L , Xu W , Tian JB , Yang Y , Zhu Y , Gong YJ , Ke JT , Gong J , Chang J , Zhong R , Miao XP. A missense variant in PTPN12 associated with the risk of colorectal cancer by modifying Ras/MEK/ERK signaling . Cancer Epidemiol , 2019,59: 109- 114. |
[35] | Li JY , Chang J , Tian JB , Ke JT , Zhu Y , Yang Y , Gong YJ , Zou DY , Peng XT , Yang N , Mei SF , Wang XY , Cheng LM , Hu WG , Gong J , Zhong R , Miao XP. A rare variant P507L in TPP1 interrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population . Cancer Epidemiol Biomarkers Prev , 2018, 27(9): 1029- 1035. |
[36] | Tian JB, Ying PT, Ke JT, Zhu Y, Yang Y, Gong YJ, Zou DY, Peng XT, Yang N, Wang XY, Mei SF, Zhang YX, Wang CY, Zhong R, Chang J, Miao XP. ANKLE1 N 6-Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability . Int J Cancer , 2020, 146(12): 3281- 3293. |
[37] | Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer , 2017, 17(11): 692- 704. |
[38] | Chang J, Tian JB, Yang Y, Zhong R, Li JY, Zhai K, Ke JT, Lou J, Chen W, Zhu BB, Shen N, Zhang Y, Gong YJ, Zhu Y, Zou DY, Peng XT, Huang K, Miao XP. A rare missense variant in TCF7L2 associates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant in the MYC enhancer . Cancer Res , 2018, 78(17): 5164- 5172. |
[39] | Moreno V , Alonso MH , Closa A , Vallés X , Diez- Villanueva A , Valle L , Castellví-Bel S , Sanz-Pamplona R , Lopez-Doriga A , Cordero D , Solé X. Colon-specific eQTL analysis to inform on functional SNPs. Br J Cancer , 2018,119(8): 971- 977. |
[40] | Wu SS, Meng QT, Zhang CC, Sun H, Lu RZ, Gao N, Yang HB, Li XB, Aschner M, Chen R. DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus . Int J Cancer , 2018, 143(1): 289- 297. |
[41] | Tian JB, Chang J, Gong J, Lou J, Fu MP, Li JY, Ke JT, Zhu Y, Gong YJ, Yang Y, Zou DY, Peng XT, Yang N, Mei SF, Wang XY, Zhong R, Cai KL, Miao XP. Systematic functional interrogation of genes in GWAS loci identified ATF1 as a key driver in colorectal cancer modulated by a promoter-enhancer interaction . Am J Hum Genet , 2019, 105(1): 29- 47. |
[42] | Gong J , Tian J , Lou J , Wang X , Ke J , Li J , Yang Y , Gong Y , Zhu Y , Zou D , Peng X , Yang N , Mei S , Zhong R , Chang J , Miao X. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267 . Ann Oncol , 2018,29(3): 632- 639. |
[43] | Yu CY , Han JX , Zhang JF , Jiang PL , Shen CQ , Guo FF , Tang JY , Yan TT , Tian XL , Zhu XQ , Ma D , Hu Y , Xie YH , Du W , Zhong M , Chen JX , Liu Q , Sun DF , Chen YX , Zou WP , Hong J , Chen HY , Fang JY. A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP90. Oncogene, 2020, 39(6): 1347- 1360. |
[44] | Wang YJ , Wu SS , Yang X , Li XB , Chen R. Association between polymorphism in the promoter region of lncRNA GAS5 and the risk of colorectal cancer . Biosci Rep , 2019,39(4): BSR20190091. |
[45] | Wang ML , Gu DY , Du ML , Xu Z , Zhang SZ , Zhu LJ , Lu JC , Zhang R , Xing JL , Miao XP , Chu HY , Hu ZB , Yang L , Tang CJ , Pan L , Du HN , Zhao J , Du J , Tong N , Sun J , Shen H , Xu J , Zhang Z , Chen J. Common genetic variation in ETV6 is associated with colorectal cancer susceptibility . Nat Commun , 2016,7: 11478. |
[46] | Zou DY , Lou J , Ke JT , Mei SF , Li JY , Gong YJ , Yang Y , Zhu Y , Tian JB , Chang J , Zhong R , Gong J , Miao XP. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression . Eur J Cancer , 2018,93: 1- 9. |
[47] | Meng QT, Wu SS, Wang YJ, Xu J, Sun H, Lu RZ, Gao N, Yang HB, Li XB, Tang BP, Aschner M, Chen R. MPO promoter polymorphism rs2333227 enhances malignant phenotypes of colorectal cancer by altering the binding affinity of AP-2α . Cancer Res , 2018, 78(10): 2760- 2769. |
[48] | Ren AJ, Sun SW, Li SW, Chen T, Shu YQ, Du ML, Zhu LJ. Genetic variants in SLC22A3 contribute to the susceptibility to colorectal cancer . Int J Cancer , 2019, 145(1): 154- 163. |
[49] | Zou DY, Zhang HL, Ke JT, Li JY, Zhu Y, Gong YJ, Yang Y, Tian JB, Zhang Y, Peng XT, Cai KL, Zhong R, Chang J, Miao XP. Three functional variants were identified to affect RPS24 expression and significantly associated with risk of colorectal cancer . Arch Toxicol , 2020, 94(1): 295- 303. |
[50] | Tian JB , Lou J , Cai YM , Rao ML , Lu ZQ , Zhu Y , Zou DY , Peng XT , Wang HX , Zhang M , Niu SY , Li Y , Zhong R , Chang J , Miao XP. Risk SNP-mediated enhancer-promoter interaction drives colorectal cancer through both FADS2 and AP002754.2. Cancer Res, 2020,80(9): 1804- 1818. |
[51] | Statkiewicz M , Maryan N , Kulecka M , Kuklinska U , Ostrowski J , Mikula M. Functional analyses of a low-penetrance risk variant rs6702619/1p21.2 associating with colorectal cancer in Polish population. Acta Biochim Pol , 2019, 66(3): 329- 336. |
[52] | Ni HZ , Su BF , Pan LM , Li XY , Zhu XX , Chen XJ. Functional variants in PXR are associated with colorectal cancer susceptibility in Chinese populations . Cancer Epidemiol , 2015,39(6): 972- 977. |
[53] | Li JY, Liu H, Zou L, Ke JT, Zhang Y, Zhu Y, Yang Y, Gong YJ, Tian JB, Zou DY, Peng XT, Gong J, Zhong R, Huang K, Chang J, Miao XP. A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site . Oncotarget , 2017, 8(37): 61318- 61326. |
[54] | Ke JT , Tian JB , Li JY , Gong YJ , Yang Y , Zhu Y , Zhang Y , Zhong R , Chang J , Gong J. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer. Mol Carcinog , 2017, 56(9): 2014- 2021. |
[55] | Li SW, Xu KL, Gu DY, He L, Xie LS, Chen ZX, Fan ZM, Zhu LJ, Du ML, Chu HY, Zhang ZD, Wu Y, Ni M, Wang ML. Genetic variants in RPA1 associated with the response to oxaliplatin-based chemotherapy in colorectal cancer . J Gastroenterol , 2019, 54(11): 939- 949. |
[56] | Xie LS , Li SW , Jin J , He L , Xu KL , Zhu LJ , Du ML , Liu YQ , Chu HY , Zhang ZD , Wang ML , Shi DN , Gu DY , Ni M. Genetic variant in miR-21 binding sites is associated with colorectal cancer risk . J Cell Mol Med , 2019,23(3): 2012- 2019. |
[57] | Gu DY, Li SW, Du ML, Tang CJ, Chu HY, Tong N, Zhang ZD, Wang ML, Chen JF. A genetic variant located in the miR-532-5p -binding site of TGFBR1 is associated with the colorectal cancer risk . J Gastroenterol , 2019, 54(2): 141- 148. |
[58] | Shen CQ, Yan TT, Wang ZH, Su HC, Zhu XQ, Tian XL, Fang JY, Chen HY, Hong J. Variant of SNP rs 1317082 at CCSlnc362 ( RP11-362K14.5 ) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis , 2018, 9(12) 1177. |
[59] | Wu S, Sun H, Wang Y, Yang X, Meng Q, Yang H, Zhu H, Tang W, Li X, Aschner M, Chen R. MALAT1 rs664589 polymorphism inhibits binding to miR-194-5p , contributing to colorectal cancer risk, growth, and metastasis . Cancer Research , 2019, 79(20): 5432- 41. |
[60] | Fu Y, Zhang YZ, Cui JY, Yang G, Peng SF, Mi WN, Yin XY, Yu Y, Jiang JW, Liu Q, Qin YY, Xu W. SNP rs 12982687 affects binding capacity of lncRNA UCA1 with miR-873-5p : involvement in smoking-triggered colorectal cancer progression . Cell Commun Signal , 2020, 18(1) 37. |
[61] | Jiang HQ , Ge FY , Hu BN , Wu LM , Yang HJ , Wang HY. rs35301225 polymorphism in miR-34a promotes development of human colon cancer by deregulation of 3'UTR in E2F1 in Chinese population . Cancer Cell Int , 2017, 17: 39. |
[62] | Jin GF, Shen HB. Cancer risk prediction in post-genome- wide association study era. Chin J Epidemiol , 2015, 36(10): 1045- 1046. |
靳光付, 沈洪兵. 后全基因组关联研究时代的肿瘤风险预测. 中华流行病学杂志, 2015, 36(10): 1045- 1046. | |
[63] | Frampton MJE , Law P , Litchfield K , Morris EJ , Kerr D , Turnbull C , Tomlinson IP , Houlston RS. Implications of polygenic risk for personalised colorectal cancer screening. Ann Oncol , 2016,27(3): 429- 434. |
[64] | Li JY, Chang J, Zhu Y, Yang Y, Gong YJ, Ke JT, Lou J, Zhong R, Gong J. Risk prediction of colorectal cancer with common genetic variants and conventional non— genetic factors in a Chinese Han population. Chin J Epidemiol , 2015, 36(10): 1053- 1057. |
李娇元, 常江, 朱颖, 杨洋, 龚雅洁, 柯俊涛, 娄娇, 钟荣, 龚静. 基于常见遗传变异和传统风险因素的中国南方汉族人群结直肠癌风险预测模型研究. 中华流行病学杂志, 2015, 36(10): 1053- 1057. | |
[65] | Summers MG , Maughan TS , Kaplan R , Law PJ , Houlston RS , Escott-Price V , Cheadle JP. Comprehensive analysis of colorectal cancer-risk loci and survival outcome: A prognostic role for CDH1 variants . Eur J Cancer , 2020,124: 56- 63. |
[66] | Penney KL, Banbury BL, Bien S, Harrison TA, Hua XW, Phipps AI, Sun W, Song MY, Joshi AD, Alberts SR, Allegra CJ, Atkins J, Colangelo LH, George TJ, Goldberg RM, Lucas PC, Nair SG, Shi Q, Sinicrope FA, Wolmark N, Yothers G, Peters U, Newcomb PA, Chan AT. Genetic variant associated with survival of patients with stage II-III colon cancer. Clin Gastroenterol Hepatol , 2020, 18(12): 2717- 2723.e3. |
[67] | Song N, Kim K, Shin A, Park JW, Chang HJ, Shi JJ, Cai QY, Kim DY, Zheng W, Oh JH. Colorectal cancer susceptibility loci and influence on survival. Genes Chromosomes Cancer , 2018, 57(12): 630- 637. |
[68] | Papachristos A, Kemos P, Katsila T, Panoilia E, Patrinos GP, Kalofonos H, Sivolapenko GB. VEGF-A and ICAM-1 gene polymorphisms as predictors of clinical outcome to first-line bevacizumab-based treatment in metastatic colorectal cancer . Int J Mol Sci , 2019, 20( 22): 5791. |
[69] | Wang HS , Haiman CA , Burnett T , Fortini BK , Kolonel LN , Henderson BE , Signorello LB , Blot WJ , Keku TO , Berndt SI , Newcomb PA , Pande M , Amos CI , West DW , Casey G , Sandler RS , Haile R , Stram DO , Le Marchand L. Fine- mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans. Hum Mol Genet , 2013,22(24): 5048- 5055. |
[70] | Schmit SL , Schumacher FR , Edlund CK , Conti DV , Ihenacho U , Wan P , Van Den Berg D , Casey G , Fortini BK , Lenz HJ , Tusié-Luna T , Aguilar-Salinas CA , Moreno- Macías H , Huerta-Chagoya A , Ordóñez-Sánchez ML , Rodríguez-Guillén R , Cruz-Bautista I , Rodríguez-Torres M , Muñóz-Hernández LL , Arellano-Campos O , Gómez D , Alvirde U , González-Villalpando C , González-Villalpando ME , Le Marchand L , Haiman CA , Figueiredo JC. Genome-wide association study of colorectal cancer in Hispanics. Carcinogenesis , 2016,37(6): 547- 556. |
[71] | Wang HS, Schmit SL, Haiman CA, Keku TO, Kato I, Palmer JR, van den Berg D, Wilkens LR, Burnett T, Conti DV, Schumacher FR, Signorello LB, Blot WJ, Zanetti KA, Harris C, Pande M, Berndt SI, Newcomb PA, West DW, Haile R, Stram DO, Figueiredo JC, Hispanic Colorectal Cancer Study, Le Marchand L. Novel colon cancer susceptibility variants identified from a genome-wide association study in African Americans. Int J Cancer , 2017, 140(12): 2728- 2733. |
[72] | Collins RL , Brand H , Karczewski KJ , Zhao XF , Alföldi J , Francioli LC , Khera AV , Lowther C , Gauthier LD , Wang H , Watts NA , Solomonson M , O'Donnell-Luria A , Baumann A , Munshi R , Walker M , Whelan CW , Huang YQ , Brookings T , Sharpe T , Stone MR , Valkanas E , Fu J , Tiao G , Laricchia KM , Ruano-Rubio V , Stevens C , Gupta N , Cusick C , Margolin L , Genome Aggregation Database Production Team , Genome Aggregation Database Consortium , Taylor KD , Lin HJ , Rich SS , Post WS , Chen YDI , Rotter JI , Nusbaum C , Philippakis A , Lander E , Gabriel S , Neale BM , Kathiresan S , Daly MJ , Banks E , MacArthur DG , Talkowski ME. A structural variation reference for medical and population genetics. Nature , 2020,581(7809): 444- 451. |
[73] | Zhou D, Jiang Y, Zhong X, Cox NJ, Liu CY, Gamazon ER. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nat Genet , 2020, 52(11): 1239- 1246. |
[74] | Song N, Lee J, Cho S, Kim J, Oh JH, Shin A. Evaluation of gene-environment interactions for colorectal cancer susceptibility loci using case-only and case-control designs. BMC cancer , 2019, 19(1): 1231. |
[75] | Zhang K, Li SW, Gu DY, Xu KL, Zheng R, Xin JY, Meng YX, Ben S, Chu HY, Zhang ZD, Shu YQ, Du ML, Liu LX, Wang ML. Genetic variants in circTUBB interacting with smoking can enhance colorectal cancer risk . Arch Toxicol , 2020, 94(1): 325- 333. |
[76] | Jung SY, Papp JC, Sobel EM, Zhang ZF. Post Genome- wide gene-environment interaction study using random survival forest: insulin resistance, lifestyle factors, and colorectal cancer risk. Cancer Prev Res (Phila) , 2019, 12(12): 877- 890. |
[1] | 王浩宇, 胡渝涵, 曹悦岩, 朱强, 黄雨果, 李茜, 张霁. 基于全基因组数据的AI-SNPs筛选及大陆次级区域内群体遗传结构差异研究[J]. 遗传, 2021, 43(10): 938-948. |
[2] | 秦丽丽, 李毅坚, 梁兆端, 陈蕾, 李文慧, 陈超, 黄亚灵, 张乐, 刘松明, 邱思, 葛玉萍, 彭文婷, 林欣欣, 张秀清, 董旋, 李波. 基于体细胞突变数据库筛选免疫原性结直肠癌高频新抗原的方法[J]. 遗传, 2020, 42(6): 599-612. |
[3] | 王玉琢, 张一鸣, 董晓莲, 王学才, 朱建福, 王娜, 江峰, 陈跃, 姜庆五, 付朝伟. 2型糖尿病易感基因SNP位点对生活方式干预降低血糖应答效果的修饰效应[J]. 遗传, 2020, 42(5): 483-492. |
[4] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[5] | 张晴,平杰,张昊翔,康波,李元丰,周钢桥. MKL1基因多态性与高原环境适应性的遗传关联研究[J]. 遗传, 2019, 41(7): 634-643. |
[6] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
[7] | 刘莉莉, 郭爱伟, 吴培福, 陈粉粉, 杨亚晋, 张勤. 敲降VPS28基因对中国荷斯坦奶牛乳脂合成的调控[J]. 遗传, 2018, 40(12): 1092-1100. |
[8] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[9] | 张统雨,朱才业,杜立新,赵福平. 羊重要性状全基因组关联分析研究进展[J]. 遗传, 2017, 39(6): 491-500. |
[10] | 弓弦,张超,伊利亚斯·艾萨,时瑛,杨雪唯,努尔斯曼古丽奥斯曼,关亚群,徐书华. 2型糖尿病易感候选基因在世界不同人群中的多样性比较分析[J]. 遗传, 2016, 38(6): 543-559. |
[11] | 宋庆峰, 张红星, 马亦龙, 周钢桥. 复杂疾病的遗传易感基因区域的精细定位[J]. 遗传, 2014, 36(1): 2-10. |
[12] | 李骞 刘舒媛 林克勤 孙浩 于亮 黄小琴 褚嘉祐 杨昭庆. EGLN1基因6个单核苷酸多态性与高海拔低氧适应的相关性[J]. 遗传, 2013, 35(8): 992-998. |
[13] | 夏正龙 俞菊华 李红霞 李建林 唐永凯 任洪涛 朱双宁. 建鲤肠型脂肪酸结合蛋白基因的分离及其SNPs与增重的相关分析[J]. 遗传, 2013, 35(5): 628-636. |
[14] | 马晓军,郭浩辉,郝绍文,孙首选,杨小春,余博,金群华. 宁夏回族原发性膝骨性关节炎与瘦素受体基因多态性的相关性[J]. 遗传, 2013, 35(3): 359-364. |
[15] | 杨应忠 王亚平 马兰 杜洋 格日力. 中国汉族高原肺水肿易感基因的全基因组关联研究[J]. 遗传, 2013, 35(11): 1291-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: