遗传 ›› 2023, Vol. 45 ›› Issue (1): 42-51.doi: 10.16288/j.yczz.22-245
收稿日期:
2022-07-19
修回日期:
2022-09-05
出版日期:
2023-01-20
发布日期:
2022-09-22
通讯作者:
尹晓娟
E-mail:tianzhichen63@163.com;yyinxiaojuan@126.com
作者简介:
田智琛,在读硕士研究生,专业方向:儿科学。E-mail: 基金资助:
Zhichen Tian1,2,3(), Xiaojuan Yin1,2,3()
Received:
2022-07-19
Revised:
2022-09-05
Online:
2023-01-20
Published:
2022-09-22
Contact:
Yin Xiaojuan
E-mail:tianzhichen63@163.com;yyinxiaojuan@126.com
Supported by:
摘要:
儿童疾病的最佳诊断和治疗依赖于对病理生理学更充分的认识,而诱导多能干细胞(induced pluripotent stem cells, iPSCs)的出现则为儿童疾病的研究和治疗提供了新的策略。iPSCs是由成熟细胞经重编程诱导而产生的具有多能性的干细胞,目前可从多种类型的体细胞(如成纤维细胞、外周血单个核细胞和尿液细胞等)诱导生成。其生成过程随着各种重编程方法的改进而越来越完善,其中利用小分子进行诱导是目前研究的热点。由于具有向多种细胞分化的能力,并且结合基因编辑技术的发展,目前它在模拟疾病和细胞治疗中的作用越来越受到青睐,特别是遗传性疾病,并且在临床治疗方面已经取得了一些成功。但在其广泛应用于临床治疗之前,仍存在一些问题需要解决,如致瘤性、免疫原性和异质性。本文重点对iPSCs来源、重编程技术、iPSCs在儿童常见疾病中的应用、目前存在的问题及展望等方面展开综述,以加深对iPSCs的理解,并为iPSCs在探索疾病的机制以及治疗领域的深入研究提供参考。
田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51.
Zhichen Tian, Xiaojuan Yin. Advances in the application of induced pluripotent stem cells in pediatric diseases[J]. Hereditas(Beijing), 2023, 45(1): 42-51.
[1] | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676. |
[2] | Bragança J, Lopes JA, Mendes-Silva L, Almeida Santos JM. Induced pluripotent stem cells, a giant leap for mankind therapeutic applications. World J Stem Cells, 2019, 11(7): 421-430. |
[3] | Durbin MD, Cadar AG, Chun YW, Hong CC. Investigating pediatric disorders with induced pluripotent stem cells. Pediatr Res, 2018, 84(4): 499-508. |
[4] | Yamanaka S. Pluripotent stem cell-based cell therapy- promise and challenges. Cell Stem Cell, 2020, 27(4): 523-531. |
[5] | Ray A, Joshi JM, Sundaravadivelu PK, Raina K, Lenka N, Kaveeshwar V, Thummer RP. An overview on promising somatic cell sources utilized for the efficient generation of induced pluripotent stem cells. Stem Cell Rev Rep, 2021, 17(6): 1954-1974. |
[6] | Wang ZQ, Zheng J, Pan RL, Chen Y. Current status and future prospects of patient-derived induced pluripotent stem cells. Hum Cell, 2021, 34(6): 1601-1616. |
[7] | Kumar S, Blangero J, Curran JE. Induced pluripotent stem cells in disease modeling and gene identification. Methods Mol Biol, 2018, 1706: 17-38. |
[8] | Cherkashova EA, Leonov GE, Namestnikova DD, Solov'eva AA, Gubskii IL, Bukharova TB, Gubskii LV, Goldstein DV, Yarygin KN. Methods of generation of induced pluripotent stem cells and their application for the therapy of central nervous system diseases. Bull Exp Biol Med, 2020, 168(4): 566-573. |
[9] | Cai CY, Meng FL, Rao L, Liu YY, Zhao XL. Induced pluripotent stem cell technology and its application in disease research. Hereditas(Beijing), 2020, 42(11): 1042-1061. |
蔡晨依, 孟飞龙, 饶琳, 刘云玥, 赵小立. 诱导多能干细胞技术及其在疾病研究中的应用. 遗传, 2020, 42(11): 1042-1061. | |
[10] | Woodard LE, Wilson MH. piggyBac-ing models and new therapeutic strategies. Trends Biotechnol, 2015, 33(9): 525-533. |
[11] | Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev, 2019, 99(1): 79-114. |
[12] | Steinle H, Weber M, Behring A, Mau-Holzmann U, Schlensak C, Wendel HP, Avci-Adali M. Generation of iPSCs by nonintegrative RNA-based reprogramming techniques: benefits of self-replicating RNA versus synthetic mRNA. Stem Cells Int, 2019, 2019: 7641767. |
[13] | Hou PP, Li YQ, Zhang X, Liu C, Guan JY, Li HG, Zhao T, Ye JQ, Yang WF, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng HK. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654. |
[14] | Guan JY, Wang G, Wang JL, Zhang ZY, Fu Y, Cheng L, Meng GF, Lyu YL, Zhu JL, Li YQ, Wang YL, Liuyang SJ, Liu B, Yang ZR, He HJ, Zhong XX, Chen QJ, Zhang X, Sun SC, Lai WF, Shi Y, Liu LL, Wang LP, Li C, Lu SC, Deng HK. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605(7909): 325-331. |
[15] | Hu YY, Yang YY, Tan PC, Zhang YX, Han MX, Yu JW, Zhang X, Jia ZR, Wang D, Li YQ, Ma TH, Liu K, Ding S. Induction of mouse totipotent stem cells by a defined chemical cocktail. Nature, 2022, Doi: 10.1038/s41586-022-04967-9. |
[16] | Cooney AL, Wambach JA, Sinn PL, McCray PB. Gene therapy potential for genetic disorders of surfactant dysfunction. Front Genome Ed, 2022, 3: 785829. |
[17] | Wambach JA, Yang P, Wegner DJ, Heins HB, Luke C, Li FH, White FV, Cole FS.Functional genomics of ABCA3 variants. Am J Respir Cell Mol Biol, 2020, 63(4): 436-443. |
[18] | Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers MF, Kotton DN. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell, 2017, 21(4): 472-488.e10. |
[19] | Leibel SL, Winquist A, Tseu I, Wang JX, Luo DC, Shojaie S, Nathan N, Snyder E, Post M. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. Sci Rep, 2019, 9(1): 13450. |
[20] | Alysandratos KD, Russo SJ, Petcherski A, Taddeo EP, Acín-Pérez R, Villacorta-Martin C, Jean JC, Mulugeta S, Rodriguez LR, Blum BC, Hekman RM, Hix OT, Minakin K, Vedaie M, Kook S, Tilston-Lunel AM, Varelas X, Wambach JA, Cole FS, Hamvas A, Young LR, Liesa M, Emili A, Guttentag SH, Shirihai OS, Beers MF, Kotton DN. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep, 2021, 36(9): 109636. |
[21] | Wehbe Z, Ghanjati F, Flotho C. Induced pluripotent stem cells to model Juvenile Myelomonocytic Leukemia: new perspectives for preclinical research. Cells, 2021, 10(9): 2335. |
[22] | Tasian SK, Casas JA, Posocco D, Gandre-Babbe S, Gagne AL, Liang G, Loh ML, Weiss MJ, French DL, Chou ST. Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia, 2019, 33(1): 181-190. |
[23] | Shigemura T, Matsuda K, Kurata T, Sakashita K, Okuno Y, Muramatsu H, Yue FM, Ebihara Y, Tsuji K, Sasaki K, Nakahata T, Nakazawa Y, Koike K. Essential role of PTPN11 mutation in enhanced haematopoietic differentiation potential of induced pluripotent stem cells of juvenile myelomonocytic leukaemia. Br J Haematol, 2019, 187(2): 163-173. |
[24] | Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci, 2020, 108: 103535. |
[25] | Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of induced pluripotent stem cell technologies to understand genetic epilepsy. Int J Mol Sci, 2020, 21(2): 482. |
[26] | Sun YS, Dolmetsch RE. Investigating the therapeutic mechanism of cannabidiol in a human induced pluripotent stem cell (iPSC)-based model of Dravet syndrome. Cold Spring Harb Symp Quant Biol, 2018, 83: 185-191. |
[27] | Lybrand ZR, Goswami S, Hsieh J. Stem cells: a path towards improved epilepsy therapies. Neuropharmacology, 2020, 168: 107781. |
[28] | Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell, 2016, 18(4): 533-540. |
[29] | Uchimura T, Asano T, Nakata T, Hotta A, Sakurai H. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Rep Med, 2021, 2(6): 100298. |
[30] | Mazaleyrat K, Badja C, Broucqsault N, Chevalier R, Laberthonnière C, Dion C, Baldasseroni L, El-Yazidi C, Thomas M, Bachelier R, Altié A, Nguyen K, Lévy N, Robin JD, Magdinier F. Multilineage differentiation for formation of innervated skeletal muscle fibers from healthy and diseased human pluripotent stem cells. Cells, 2020, 9(6): 1531. |
[31] | Yoshioka K, Ito A, Horie M, Ikeda K, Kataoka S, Sato K, Yoshigai T, Sakurai H, Hotta A, Kawabe Y, Kamihira M. Contractile activity of myotubes derived from human induced pluripotent stem cells: a model of Duchenne muscular dystrophy. Cells, 2021, 10(10): 2556. |
[32] | Sun CS, Choi IY, Rovira Gonzalez YI, Andersen P, Talbot CC, Iyer SR, Lovering RM, Wagner KR, Lee G. Duchenne muscular dystrophy hiPSC-derived myoblast drug screen identifies compounds that ameliorate disease in mdx mice. JCI Insight, 2020, 5(11): e134287. |
[33] | Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med, 2017, 376(11): 1038-1046. |
[34] | Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, Park KJ, Lee IH, Lopes C, Feitosa M, Luna MJ, Jung JH, Kim J, Hwang D, Cohen BM, Teicher MH, Leblanc P, Carter BS, Kordower JH, Bolshakov VY, Kong SW, Schweitzer JS, Kim KS. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models. J Clin Invest, 2020, 130(2): 904-920. |
[35] | Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 2017, 548(7669): 592-596. |
[36] | Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, Amano N, Nomura M, Umekage M, Morizane A, Takahashi J. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease. Nat Commun, 2020, 11(1): 3369. |
[37] | Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, Jeon J, Cha Y, Kim K, Li QZ, Henchcliffe C, Kaplitt M, Neff C, Rapalino O, Seo H, Lee IH, Kim J, Kim T, Petsko GA, Ritz J, Cohen BM, Kong SW, Leblanc P, Carter BS, Kim KS. Personalized iPSC-derived dopamine progenitor cells for parkinson's disease. N Engl J Med, 2020, 382(20): 1926-1932. |
[38] | Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T, Chalk C, Glage S, Dittrich-Breiholz O, Trapnell B, Moritz T, Hansen G. Pulmonary transplantation of human induced pluripotent stem cell-derived macrophages ameliorates pulmonary alveolar proteinosis. Am J Respir Crit Care Med, 2018, 198(3): 350-360. |
[39] | Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep, 2017, 7(1): 15195. |
[40] | Shafa M, Ionescu LI, Vadivel A, Collins JJP, Xu LQ, Zhong SM, Kang M, de Caen G, Daneshmand M, Shi J, Fu KZ, Qi A, Wang Y, Ellis J, Stanford WL, Thébaud B. Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia- induced lung injury. Cytotherapy, 2018, 20(1): 108-125. |
[41] | Miura Y, Sato M, Kuwahara T, Ebata T, Tabata Y, Sakurai H. Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice. PLoS One, 2022, 17(4): e0266391. |
[42] | Qin C, Guo Y, Yang DG, Yang ML, Du LJ, Li JJ. Induced pluripotent stem cell transplantation improves locomotor recovery in rat models of spinal cord injury: a systematic review and meta-analysis of randomized controlled trials. Cell Physiol Biochem, 2018, 47(5): 1835-1852. |
[43] | Kajikawa K, Imaizumi K, Shinozaki M, Shibata S, Shindo T, Kitagawa T, Shibata R, Kamata Y, Kojima K, Nagoshi N, Matsumoto M, Nakamura M, Okano H. Cell therapy for spinal cord injury by using human iPSC-derived region- specific neural progenitor cells. Mol Brain, 2020, 13(1): 120. |
[44] | Okubo T, Iwanami A, Kohyama J, Itakura G, Kawabata S, Nishiyama Y, Sugai K, Ozaki M, Iida T, Matsubayashi K, Matsumoto M, Nakamura M, Okano H. Pretreatment with a γ-secretase inhibitor prevents tumor-like overgrowth in human iPSC-derived transplants for spinal cord injury. Stem Cell Reports, 2016, 7(4): 649-663. |
[45] | Kojima K, Miyoshi H, Nagoshi N, Kohyama J, Itakura G, Kawabata S, Ozaki M, Iida T, Sugai K, Ito S, Fukuzawa R, Yasutake K, Renault-Mihara F, Shibata S, Matsumoto M, Nakamura M, Okano H. Selective ablation of tumorigenic cells following human induced pluripotent stem cell- derived neural stem/progenitor cell transplanttation in spinal cord injury. Stem Cells Transl Med, 2019, 8(3): 260-270. |
[46] | Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The challenge of bringing iPSCs to the patient. Int J Mol Sci, 2019, 20(24): 6305. |
[47] | Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, Turner D. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res, 2020, 49: 102035. |
[48] | Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, Itoh Y, Okita K, Yamasaki E, Doi D, Onoe H, Ogasawara K, Yamanaka S, Takahashi J.MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat Commun, 2017, 8(1): 385. |
[49] | Sugita S, Mandai M, Hirami Y, Takagi S, Maeda T, Fujihara M, Matsuzaki M, Yamamoto M, Iseki K, Hayashi N, Hono A, Fujino S, Koide N, Sakai N, Shibata Y, Terada M, Nishida M, Dohi H, Nomura M, Amano N, Sakaguchi H, Hara C, Maruyama K, Daimon T, Igeta M, Oda T, Shirono U, Tozaki M, Totani K, Sugiyama S, Nishida K, Kurimoto Y, Takahashi M. HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration. J Clin Med, 2020, 9(7): 2217. |
[50] | Xu HG, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, Ueda T, Gee P, Nishikawa M, Nomura M, Kitaoka F, Takahashi T, Okita K, Yoshida Y, Kaneko S, Hotta A. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell, 2019, 24(4): 566-578.e7. |
[51] | Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 2014, 158(6): 1254-1269. |
[52] | Di Stefano B, Ueda M, Sabri S, Brumbaugh J, Huebner AJ, Sahakyan A, Clement K, Clowers KJ, Erickson AR, Shioda K, Gygi SP, Gu HC, Shioda T, Meissner A, Takashima Y, Plath K, Hochedlinger K. Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods, 2018, 15(9): 732-740. |
[1] | 崔浩亮, 史佩华, 高锦春, 张新博, 赵顺然, 陶晨雨. 细胞重编程过程中核小体定位改变研究进展[J]. 遗传, 2022, 44(3): 208-215. |
[2] | 蔡晨依, 孟飞龙, 饶琳, 刘云玥, 赵小立. 诱导多能干细胞技术及其在疾病研究中的应用 【已撤稿】[J]. 遗传, 2020, 42(11): 1042-1061. |
[3] | 敖政, 陈祥, 吴珍芳, 李紫聪. 体细胞克隆猪发育异常研究进展[J]. 遗传, 2020, 42(10): 993-1003. |
[4] | 黄星卫, 程香荣, 王楠, 张雨薇, 廖辰, 金连弘, 雷蕾. 组蛋白H3变体H3.3及其在细胞重编程中的作用[J]. 遗传, 2018, 40(3): 186-196. |
[5] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[6] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[7] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[8] | 敖政, 刘德武, 蔡更元, 吴珍芳, 李紫聪. 克隆哺乳动物的胎盘发育缺陷[J]. 遗传, 2016, 38(5): 402-410. |
[9] | 任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887. |
[10] | 曹明君, 董焕生, 潘庆杰, 王红军, 董晓. 胰腺早期发育及终末分化细胞重编程为胰岛β细胞的研究进展[J]. 遗传, 2014, 36(6): 511-518. |
[11] | 宋红卫, 安铁洙, 朴善花, 王春生. 哺乳动物DNA甲基化及其在体细胞诱导重编程中的作用[J]. 遗传, 2014, 36(5): 431-438. |
[12] | 马克学, 马克世, 席兴字. 表观遗传跨代继承表型研究进展[J]. 遗传, 2014, 36(5): 476-484. |
[13] | 纪慧丽, 卢晟盛, 潘登科. 体细胞核移植后表观遗传重编程的异常及其修复[J]. 遗传, 2014, 36(12): 1211-1218. |
[14] | 范宗兴,朱化彬,杜卫华. 细胞抽提物诱导的体细胞重编程[J]. 遗传, 2013, 35(3): 262-268. |
[15] | 孙红艳,王锋,曹文广. 细胞命运转变——谱系重编程技术研究进展[J]. 遗传, 2012, 34(8): 985-992. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: