[1] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154–156.<\p>
[2] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147.<\p>
[3] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676.<\p>
[4] Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stew-art R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920.<\p>
[5] 秦彤, 苗向阳. iPS细胞研究的新进展及应用. 遗传, 2010, 32(12): 1205–1214.<\p>
[6] Ambros V, Lee RC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 2004, 265: 131–158.<\p>
[7] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215–233.<\p>
[8] Mathelier A, Carbone A. Large scale chromosomal map-ping of human microRNA structural clusters. Nucleic Acids Res, 2013, 41(8): 4392–4408.<\p>
[9] Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res, 2011, 71(18): 5950–5954.<\p>
[10] Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drap-kin R, Jenuwein T, Livingston DM, Rajewsky K. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005, 19(4): 489–501.<\p>
[11] Wang YM, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silenc-ing of embryonic stem cell self-renewal. Nat Genet, 2007, 39(3): 380–385.<\p>
[12] Wang YM, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid prolifera-tion. Nat Genet, 2008, 40(12): 1478–1483.<\p>
[13] Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang YZ, Yang WL, Gruber PJ, Epstein JA, Morrisey EE. Highly efficient miRNA-mediated repro-gramming of mouse and human somatic cells to pluripo-tency. Cell Stem Cell, 2011, 8(4): 376–388.<\p>
[14] Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li YL, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 2011, 476(7359): 228–231.<\p>
[15] Li SS, Yu SL, Kao LP, Tsai ZY, Singh S, Chen BZ, Ho BC, Liu YH, Yang PC. Target identification of microR-NAs expressed highly in human embryonic stem cells. J Cell Biochem, 2009, 106(6): 1020–1030.<\p>
[16] Ruby JG, Jan CH, Bartel DP. Intronic microRNA precur-sors that bypass Drosha processing. Nature, 2007, 448(7149): 83–86.<\p>
[17] Du ZH, Lee JK, Tjhen R, Stroud RM, James TL. Struc-tural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc Natl Acad Sci USA, 2008, 105(7): 2391–2396.<\p>
[18] Murphy D, Dancis B, Brown JR. The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol, 2008, 8: 92.<\p>
[19] Diederichs S, Haber DA. Dual role for argonautes in mi-croRNA processing and posttranscriptional regulation of microRNA expression. Cell, 2007, 131(6): 1097–1108.<\p>
[20] Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, Altmeyer P, Bechara FG. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components Argonaute-1, Argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog, |