遗传 ›› 2014, Vol. 36 ›› Issue (12): 1211-1218.doi: 10.3724/SP.J.1005.2014.1211

• 综述 • 上一篇    下一篇

体细胞核移植后表观遗传重编程的异常及其修复

纪慧丽1, 2, 卢晟盛1, 潘登科2   

  1. 1. 广西大学动物科学技术学院, 亚热带农业生物资源保护与利用国家重点实验室, 南宁 530004;
    2. 中国农业科学院北京畜牧兽医研究所, 农业部畜禽遗传资源与种质创新重点实验室, 北京 100193
  • 收稿日期:2014-07-17 出版日期:2014-12-20 发布日期:2014-12-20
  • 通讯作者: 潘登科, 博士, 副研究员, 研究方向:动物胚胎生物技术。E-mail: pandengke2002@163.com卢晟盛, 博士, 研究员, 博士生导师, 研究方向:动物繁殖生物技术。E-mail: sslu@gxu.edu.cn E-mail:jihuili1989@163.com
  • 作者简介:纪慧丽, 硕士研究生, 专业方向:动物胚胎生物技术。
  • 基金资助:

    转基因生物新品种培育重大专项(编号:2014ZX0800605B)和国家高技术研究发展计划(863计划)项目(编号:2012AA020601)资助

Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions

Ji Huili1, 2, Lu Shengsheng1, Pan Dengke2   

  1. 1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
    2. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
  • Received:2014-07-17 Online:2014-12-20 Published:2014-12-20

摘要:

体细胞核移植(Somatic cell nuclear transfer, SCNT)是指将高度分化的体细胞移入到去核的卵母细胞中发育并最终产生后代的技术。然而, 体细胞克隆的总体效率仍然处于一个较低的水平, 主要原因之一是由于体细胞供体核不完全的表观遗传重编程, 包括DNA甲基化、组蛋白乙酰化、基因组印记、X染色体失活和端粒长度等修饰出现的异常。使用一些小分子化合物以及Xist基因的敲除或敲低等方法能修复表观遗传修饰错误, 辅助供体核的重编程, 从而提高体细胞克隆效率, 使其更好地应用于基础研究和生产实践。文章对体细胞核移植后胚胎发育过程中出现的异常表观遗传修饰进行了综述, 并着重论述了近年来有关修复表观遗传错误的研究进展。

关键词: 体细胞核移植, 重编程, 表观遗传异常, 小分子化合物

Abstract:

Somatic cell nuclear transfer (SCNT) is a technology by which a highly differentiated somatic nucleus is transferred into an enucleated oocyte to generate a reconstructed embryo that subsequently develops to an offspring. However, to date, the efficiency of cloned animal is still low. The major reason is incomplete nuclear reprogramming of donor cells after nuclear transfer, which results in abnormal epigenetic modifications, including DNA methylation, histone acetylation, gene imprinting, X-chromosome inactivation, and telomere length. Most improvements have been made in somatic epigenetic reprogramming with small molecules and manipulating expression of specific genes. It is expected that SCNT will soon have broad applications in both basic research and practical production. In this review, we summarize the recent progress in epigenetic reprogramming by somatic cell nuclear transfer; in particular, we focus on strategies for rescuing the epigenetic errors occurring during SCNT.

Key words: SCNT, reprogramming, epigenetic errors, small molecules