遗传 ›› 2016, Vol. 38 ›› Issue (11): 1020-1029.doi: 10.16288/j.yczz.16-107

• 研究报告 • 上一篇    下一篇

四倍体小麦背景中长穗偃麦草E染色体传递特征

李海凤1, 2, 刘慧萍1, 戴毅1, 黄帅3, 张军2, 高勇1, 陈建民1   

  1. 1. 扬州大学生物科学与技术学院,扬州 225009;
    2. 扬州市职业大学,扬州 225012;
    3. 江苏省农业生物学重点实验室,南京 210014
  • 收稿日期:2016-03-29 出版日期:2016-11-20 发布日期:2016-06-29
  • 通讯作者: 陈建民,博士,教授,研究方向:植物分子细胞遗传。Tel: 0514-87979286;E-mail: jmchen@yzu.edu.cn
  • 作者简介:李海凤,博士,讲师,研究方向:分子细胞遗传学。E-mail: lihaifeng902@163.com;刘慧萍,硕士,专业方向:分子细胞遗传学。E-mail: hpliu8002@hotmail.com;李海凤和刘慧萍为并列第一作者。
  • 基金资助:
    国家自然科学基金项目(编号:31071406),高等学校博士学科点专项基金(编号:20123250110010)和江苏省农业生物学重点实验室开放项目资助

Transmitting characters of individual E chromosomes of Thinopyrum elongatum in Triticum turgidum background

Haifeng Li1, 2, Huiping Liu1, Yi Dai1, Shuai Huang3, Jun Zhang2, Yong Gao1, Jianmin Chen1   

  1. 1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China;
    2. Yangzhou Polytechnic College, Yangzhou 225012, China;
    3. Jiangsu Provincial Key Lab for Agrobiology, Nanjing 210014, China
  • Received:2016-03-29 Online:2016-11-20 Published:2016-06-29
  • Supported by:
    [Supported by the National Natural Science Foundation of China(No. 31071406), the Specialized Research Fund for Doctoral Program of Higher Education of China (No. 20123250110010) and the Research Fund of Jiangsu Provincial Key Lab for Agrobiology]

摘要: 通过细胞学方法和染色体特异分子标记鉴定六倍体小偃麦(AABBEE)与硬粒小麦(AABB)杂交的自交后代F2和F3植株,探讨长穗偃麦草染色体在硬粒小麦背景中世代间的传递特征,并筛选硬粒小麦-长穗偃麦草E染色体附加系。对218个F2单株染色体数检测表明,2n=28植株占41.7%,2n=29植株占18.3%,其余40.0%植株的染色体数在2n=31~42范围内。分子标记鉴定表明,在F2代2n=29单体附加植株中,不同的长穗偃麦草染色体传递率之间存在明显差异,1E传递率最高,3E和6E传递率最低。在F2代2n=30单株中,1E、4E、7E和5E染色体相互组合产生的双单体多,6E参与组合较少,未检测到2E或3E与其他染色体的组合单株。在1E~7E单体附加株自交后代F3中,E染色体传递率变化范围为9.1%~27.5%,1E传递率最高,6E传递率最低,与F2的传递率一致。从F3代中选育出1E~7E单体附加及少数二体附加,所有单体附加均可育。这些附加E染色体材料将对小麦代换系和易位系的创制提供有益的中间材料。

关键词: 六倍体小偃麦, 硬粒小麦, 长穗偃麦草, 传递率, 染色体特异分子标记

Abstract: The transmission patterns of Thinopyrum elongatum chromosomes in the background of Triticum turgidum were investigated through cytogenetic and molecular marker analysis based on the F2 and F3 plants derived from a cross between Triticum trititrigia (AABBEE) and T. turgidum L. ssp. durum (AABB). An additional objective was to develop durum-Th. elongatum E chromosome addition lines. Among 218 F2 plants, individuals with 2n=28 accounted for 41.7%, those with 2n=29 accounted for 18.3%, and the remaining 40.0% had 2n=31-42. Molecular marker analysis of the F2 monosomic addition plants with 2n=29 showed significant differences in transmission rate among Th. elongatum chromosomes. Chromosome 1E had the highest transmission rates, while 3E and 6E had the lowest. Among F2 double monosomic addition plants with 2n=30, joint transmission was frequent between 1E, 4E, 7E and 5E; 6E was less frequent in joint transmission with other chromosomes, while 2E and 3E never transmitted along with other chromosomes. Among F3 plants derived from F2 monosomic addition plants, the transmission rates of E chromosomes varied widely, from the minimum of 9.1% for 6E to the maximum of 27.5% for 1E, consistent with observations from F2 plants. A full set of durum-Th. elongatum 1E-7E monosomic addition lines and several disomic addition lines were selected from F3 plants, and all monosomic addition plants were fertile. These chromosome E addition lines will be useful intermediate materials for developing substitution lines and translocation lines.

Key words: Triricum trititrigia (6×), Triticum turgidum, Thinopyrum elongatum, transmission rate, chromosome-specific molecular markers