[1] | Blasco A, Toro MA . A short critical history of the application of genomics to animal breeding. LivestSci, 2014,166(8):4-9. | [2] | Thomson M . High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol, 2014,2(3):195-212. | [3] | Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M . A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science, 2007,316(5829):1341-1345. | [4] | Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH . A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 2006,314(5804):1461-1463. | [5] | Meuwissen THE, Hayes BJ, Goddard ME . Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157(4):1819-1829. | [6] | Tan C, Bian C, Yang D, Li N, Wu ZF, Hu XX, Li MZ . Application of genomic selection in farm animal breeding. Hereditas(Beijing), 2017,39(11):1033-1045. | [6] | 谈成, 边成, 杨达, 李宁, 吴珍芳, 胡晓湘, 李明洲 . 基因组选择技术在农业动物育种中的应用. 遗传, 2017,39(11):1033-1045. | [7] | He J, Qian CS, Richard T Jr., Bauck S, Wu XL . Estimating genomic breed composition of individual animals using selected SNPs. Hereditas(Beijing), 2018,40(4):305-314. | [7] | 何俊, 钱长嵩, Richard G.Tait Jr., Stewart Bauck, 吴晓林 . SNP芯片数据估计动物个体基因组品种构成的方法及应用. 遗传, 2018,40(4):305-314. | [8] | vanEenennaam AL, Weigel KA, Young AE, Cleveland MA, Dekkers JCM . Applied animal genomics: results from the field. Annu Rev AnimBiosci, 2013,2(2):105-139. | [9] | Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS . Genomic selection in dairy cattle: the USDA experience. Annu Rev AnimBiosci, 2017,5(1):309-327. | [10] | Akdemir D, Sánchez JI . Efficient breeding by genomic mating. Front Genet, 2016,7:210. | [11] | Marchini J, Howie B . Genotype imputation for genome-wide association studies. Nat Rev Genet, 2010,11(7):499-511. | [12] | He S, Ding XD, Zhang Q . Comparison of different genotype imputation methods. Chin J AnimSci, 2013,49(23):95-100. | [12] | 何桑, 丁向东, 张勤 , 基因型填充方法介绍及比较. 中国畜牧杂志, 2013,49(23):95-100. | [13] | Aittokallio T . Dealing with missing values in large-scale studies: microarray data imputation and beyond. BriefBioinform, 2009,11(2):253-264. | [14] | Weigel KA, de los Campos G, González-Recio O, Naya H, Wu XL, Long N, Rosa GJ, Gianola D . Predictive ability of direct genomic values for lifetime net merit of holstein sires using selected subsets of single nucleotide polymerphism markers. J Dairy Sci, 2009,92(10):5248-5257. | [15] | Felipe VP, Okut H, Gianola D, Silva MA, Rosa GJ . Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data. BMC Genet, 2014,15(1):149. | [16] | Zhang Z, Druet T . Marker imputation with low-density marker panels in dutchholstein cattle. J Dairy Sci, 2010,93(11):5487-5494. | [17] | Wu XL, Gianola D, Hu ZL, Reecy JM . Meta-analysis of quantitative trait association and mapping studies using parametric and non-parametric models. J BiomBiostat, 2011,1:1-9. | [18] | Lopes FB, Wu XL, Li H, Xu J, Perkins T, Genho J, Ferretti R, Tait RG Jr, Bauck S, Rosa GJ . Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes. J Anim Breed Genet, 2018,135(1):14-27. | [19] | Li Y, Willer C, Sanna S, Abecasis G . Genotype imputation. Annu Rev Genomics Hum Genet, 2009,10:387-406. | [20] | Chen L, Li C, Sargolzaei M, Schenkel F . Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. PLoS One, 2014,9(7):e101544. | [21] | Pimentel ECG, Edel C, Emmerling R, Götz KU . How imputation errors bias genomic predictions. J Dairy Sci, 2015,98(6):4131-4138. | [22] | Browning BL, Browning SR . A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet, 2009,84(2):210-223. | [23] | Ventura RV, Lu D, Schenkel FS, Wang Z, Li C, Miller SP . Impact of reference population on accuracy of imputation from 6K to 50K single nucleotide polymorphism chips in purebred and crossbreed beef cattle. J AnimSci, 2014,92(4):1433-1444. | [24] | Roshyara NR, Scholz M . Impact of genetic similarity on imputation accuracy. BMC Genet, 2015,16(1):90. | [25] | Purfield DC, McClure M, Berry DP . Justification for setting the individual animal genotype call rate threshold at eighty-five percent. J AnimSci, 2016,94(11):4558-4569. | [26] | Boison SA, Santos DJA, Utsunomiya AHT, Carvalheiro R, Neves HHR, O’Brien AMP, Garcia JF, Sölkner J, da Silva MVGB . Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bosindicus) dairy cattle: comparison of commercially available SNP chips. J Dairy Sci, 2015,98(7):4969-4989. | [27] | Ventura RV, Miller SP, Dodds KG, Auvray B, Lee M, Bixley M, Clarke SM, McEwan JC . Assessing accuracy of imputation using different SNP panel densities in a multi-breed sheep population. Genet SelEvol, 2016,48(1):71. | [28] | Mitt M, Kals M, Pärn K, Gabriel SB, Lander ES, Palotie A, Ripatti S, Morris AP, Metspalu A, Esko T, Mägi R, Palta P . Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur J Hum Genet, 2017,25(7):869-876. | [29] | Hess MA, Rhydderch JG, LeClair LL, Buckley RM, Kawase M, Hauser L . Estimation of genotyping error rate from repeat genotyping, unintentional recaptures and known parent-offspring comparisons in 16 microsatellite loci for brown rockfish (Sebastesauriculatus). MolEcolResour, 2012,12(6):1114-1123. | [30] | Wall JD, Tang LF, Zerbe B, Kvale MN, Kwok PY, Schaefer C, Risch N . Estimating genotype error rates from high-coverage next-generation sequence data. Genome Res, 2014,24(11):1734-1739. | [31] | Wang J . Estimating genotyping errors from genotype and reconstructed pedigree data. Methods EcolEvol, 2018,9(1):109-120. | [32] | Sargolzaei M, Chesnais JP, Schenkel FS . A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 2014,15(1):478. | [33] | Calus MP, Bouwman AC, Hickey JM, Veerkamp RF, Mulder HA . Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Animal, 2014,8(11):1743-1753. | [34] | Wu XL, Xu J, Feng G, Wiggans GR, Taylor JF, He J, Qian C, Qiu J, Simpson B, Walker J, Bauck S . Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications. PLoS One, 2016,11(9):e0161719. | [35] | Zhang B, Zhi D, Zhang K, Gao G, Limdi NN, Liu N . Practical consideration of genotype imputation: sample size, window size, reference choice, and untyped rate. Stat Interface, 2011,4(3):339-352. | [36] | Spits C, Le Caignec C, de Rycke M, van Haute L, van Steirteghem A, Liebaers I, Sermon K . Whole-genome multiple displacement amplification from single cells. Nat Protoc, 2006,1(4):1965-1970. | [37] | Hao K, Li C, Rosenow C, Wong WH . Estimation of genotype error rate using samples with pedigree information—an application on the GeneChip Mapping 10K array. Genomics, 2004,84(4):623-630. |
|