[1] | Mukherjee S, Ghosh RN, Maxfield FR . Endocytosis. Physiol Rev, 1997,77(3):759-803. | [2] | Cullen PJ, Steinberg F . To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol, 2018,19(11):679-696. | [3] | Preston JE, Joan Abbott N, Begley DJ . Transcytosis of macromolecules at the Blood-Brain barrier. Adv Pharmacol, 2014,71:147-163. | [4] | Antonescu CN, Mcgraw TE, Klip A . Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol, 2014,6(7):a016964. | [5] | Mellman I, Yarden Y . Endocytosis and cancer. CSH Perspect Biol, 2013,5(12):a016949. | [6] | Irannejad R, von Zastrow M . GPCR signaling along the endocytic pathway. Curr Opin Cell Biol, 2014,27:109-116. | [7] | Goh LK, Sorkin A . Endocytosis of receptor tyrosine kinases. CSH Perspect Biol, 2013,5(5):a017459. | [8] | Steinman RM, Mellman IS, Muller WA, Cohn ZA . Endocytosis and the recycling of plasma membrane. J Cell Biol, 1983,96(1):1-27. | [9] | Conner SD, Schmid SL . Regulated portals of entry into the cell. Nature, 2003,422(6927):37-44. | [10] | Doherty GJ , McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem, 2009,78:857-902. | [11] | Bonifacino JS, Rojas R . Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Bio, 2006,7(8):568-579. | [12] | Gruenberg J, Stenmark H . The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Bio, 2004,5(4):317-323. | [13] | Carpentier JL, Gorden P, Anderson RG, Goldstein JL, Brown MS, Cohen S, Orci L . Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J Cell Biol, 1982,95(1):73-77. | [14] | Neutra MR, Ciechanover A, Owen LS, Lodish HF . Intracellular transport of transferrin- and asialoorosomucoid- colloidal gold conjugates to lysosomes after receptor- mediated endocytosis. Chin J Histochem Cytochem, 1985,33(11):1134-1144. | [15] | Robinson MS . Forty years of Clathrin-coated vesicles. Traffic, 2015,16(12):1210-1238. | [16] | Kirchhausen T . Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Bi, 1999,15:705-732. | [17] | McMahon HT, Boucrot E . Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011,12(8):517-533. | [18] | Kamikura DM, Cooper JA . Clathrin interaction and subcellular localization of Ce-DAB-1, an adaptor for protein secretion in Caenorhabditis elegans. Traffic, 2006,7(3):324-336. | [19] | Traub LM, Bonifacino JS . Cargo recognition in clathrin- mediated endocytosis. CSH Perspect Biol, 2013,5(11):a016790. | [20] | Cocucci E, Aguet F, Boulant S, Kirchhausen T . The first five seconds in the life of a clathrin-coated pit. Cell, 2012,150(3):495-507. | [21] | Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT . FCHo proteins are nucleators of clathrin-mediated endocytosis. Science, 2010,328(5983):1281-1284. | [22] | Woodward MP, Roth TF . Coated vesicles: characterization, selective dissociation, and reassembly. Proc Natl Acad Sci USA, 1978,75(9):4394-4398. | [23] | Qualmann B, Koch D, Kessels MM . Let’s go bananas: revisiting the endocytic BAR code. EMBO J, 2011,30(17):3501-3515. | [24] | Aguet F, Antonescu CN, Mettlen M, Schmid SL, Danuser G . Advances in analysis of low Signal-to-Noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev Cell, 2013,26(3):279-291. | [25] | Schmid SL, Frolov VA . Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol, 2011,27:79-105. | [26] | Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E . Role of auxilin in uncoating clathrin-coated vesicles. Nature, 1995,378(6557):632-635. | [27] | Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A . Interleukin 2 receptors and Detergent- Resistant membrane domains define a Clathrin-Independent endocytic pathway. Mol Cell, 2001,7(3):661-671. | [28] | Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N , McMahon HT. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature, 2014,517(7535):460-465. | [29] | Huotari J, Helenius A . Endosome maturation. EMBO J, 2011,30(17):3481-3500. | [30] | Mayor S, Parton RG, Donaldson JG . Clathrin- independent pathways of endocytosis. CSH Perspect Biol, 2014,6(6). | [31] | Donaldson JG, Jackson CL . ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol, 2011,12(6):362-375. | [32] | Radhakrishna H, Donaldson JG . ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol, 1997,139(1):49-61. | [33] | Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, Grant BD . RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci USA, 2012,109(35):E2306-15. | [34] | Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG . Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol, 2005,168(3):465-476. | [35] | Bitsikas V, Corrêa IR Jr, Nichols BJ . Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife, 2014,3:e03970. | [36] | Sigismund S, Algisi V, Nappo G, Conte A, Pascolutti R, Cuomo A, Bonaldi T, Argenzio E, Verhoef LG, Maspero E, Bianchi F, Capuani F, Ciliberto A, Polo S, Di Fiore PP . Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J, 2013,32(15):2140-2157. | [37] | Stenmark H . Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Bio, 2009,10(8):513-525. | [38] | Barr F, Lambright DG . Rab GEFs and GAPs. Curr Opin Cell Biol, 2010,22(4):461-470. | [39] | Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, Balch WE . Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell, 2005,16(8):3847-3864. | [40] | Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M . The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992,70(5):715-728. | [41] | Woodman PG . Biogenesis of the sorting endosome: the role of Rab5. Traffic, 2000,1(9):695-701. | [42] | Carney DS, Davies BA, Horazdovsky BF . Vps9 domain- containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol, 2005,16(1):27-35. | [43] | Chotard L, Skorobogata O, Sylvain MA, Shrivastava S, Rocheleau CE . TBC-2 Is required for embryonic yolk protein storage and larval survival during L1 diapause in Caenorhabditis elegans. PLoS One, 2011,5(12):e15662. | [44] | Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD . Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol, 2005,7(6):559-569. | [45] | Sann SB, Crane MM, Lu H, Jin Y . Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans. PLoS One, 2012,7(6):e37930. | [46] | Poteryaev D, Datta S, Ackema K, Zerial M, Spang A . Identification of the switch in Early-to-Late endosome transition. Cell, 2010,141(3):497-508. | [47] | Doi M, Minematsu H, Kubota Y, Nishiwaki K, Miyamoto M . The novel Rac effector RIN-1 regulates neuronal cell migration and axon pathfinding in C. elegans. Development, 2013,140(16):3435-3444. | [48] | Funderburk SF, Wang QJ, Yue Z . The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol, 2010,20(6):355-362. | [49] | Lindmo K, Stenmark H . Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci, 2006,119(4):605-614. | [50] | Dang H, Li Z, Skolnik EY, Fares H . Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol Cell, 2004,15(1):189-196. | [51] | Ruck A, Attonito J, Garces KT, Núnez L, Palmisano NJ, Rubel Z, Bai Z, Nguyen KCQ, Sun L, Grant BD, Hall DH, Meléndez A . The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy, 2011,7(4):386-400. | [52] | Xue Y, Fares H, Grant B, Li Z, Rose AM, Clark SG, Skolnik EY . Genetic analysis of the myotubularin family of phosphatases in Caenorhabditis elegans. J Biol Chem, 2003,278(36):34380-34386. | [53] | Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD . RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell, 2006,17(3):1286-1297. | [54] | Shi A, Chen CC, Banerjee R, Glodowski D, Audhya A, Rongo C, Grant BD . EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell, 2010,21(16):2930-2943. | [55] | Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, Grant BD . RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci USA, 2012,109(35):E2306-15. | [56] | Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW . Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 2006,17(7):3156-3175. | [57] | Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, Yang Z, Wang H, Shi A, Grant BD . RAB-10 Promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet, 2016,12(6):e1006093. | [58] | Glodowski DR, Chen CC, Schaefer H, Grant BD, Rongo C . RAB-10 regulates glutamate receptor recycling in a cholesterol-dependent endocytosis pathway. Mol Biol Cell, 2007,18(11):4387-4396. | [59] | Ang AL, Taguchi T, Francis S, F?lsch H, Murrells LJ, Pypaert M, Warren G, Mellman I . Recycling endosomes can serve as intermediates during transport from the golgi to the plasma membrane of MDCK cells. J Cell Biol, 2004,167(3):531-543. | [60] | Babbey CM, Ahktar N, Wang E, Chen CC, Grant BD, Dunn KW . Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 2006,17(7):3156-3175. | [61] | Sano H, Eguez L, Teruel MN, Fukuda M, Chuang TD, Chavez JA, Lienhard GE, McGraw TE . Rab10, a target of the AS160 Rab GAP, is required for insulin- stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab, 2007,5(4):293-303. | [62] | Guilherme A, Soriano NA, Bose S, Holik J, Bose A, Pomerleau DP, Furcinitti P, Leszyk J, Corvera S, Czech MP . EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem, 2004,279(11):10593-10605. | [63] | Guilherme A, Soriano NA, Furcinitti PS, Czech MP . Role of EHD1 and EHBP1 in perinuclear sorting and insulin-regulated GLUT4 recycling in 3T3-L1 adipocytes. J Biol Chem, 2004,279(38):40062-40075. | [64] | Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K . Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic, 2007,8(1):47-60. | [65] | Hutagalung AH, Novick PJ . Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev, 2011,91(1):119-149. | [66] | Liu H, Wang S, Hang W, Gao J, Zhang W, Cheng Z, Yang C, He J, Zhou J, Chen J, Shi A . LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J Cell Biol, 2018,217(1):299-314. | [67] | Grant B, Zhang Y, Paupard MC, Lin SX, Hall DH, Hirsh D . Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol, 2001,3(6):573-579. | [68] | Apodaca G, Katz LA, Mostov KE . Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol, 1994,125(1):67-86. | [69] | Lin SX, Grant B, Hirsh D, Maxfield FR . Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat Cell Biol, 2001,3(6):567-572. | [70] | Santolini E, Salcini AE, Kay BK, Yamabhai M, Di Fiore PP . The EH network. Exp Cell Res, 1999,253(1):186-209. | [71] | de Beer T, Hoofnagle AN, Enmon JL, Bowers RC, Yamabhai M, Kay BK, Overduin M . Molecular mechanism of NPF recognition by EH domains. Nat Struct Biol, 2000,7(11):1018-1022. | [72] | Braun A, Pinyol R, Dahlhaus R, Koch D, Fonarev P, Grant BD, Kessels MM, Qualmann B . EHD proteins associate with syndapin I and II and such interactions play a crucial role in endosomal recycling. Mol Biol Cell, 2005,16(8):3642-3658. | [73] | Shi A, Pant S, Balklava Z, Chen CC, Figueroa V, Grant BD . A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr Biol, 2007,17(22):1913-1924. | [74] | Lee DW, Zhao X, Scarselletta S, Schweinsberg PJ, Eisenberg E, Grant BD, Greene LE . ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J Biol Chem, 2005,280(17):17213-17220. | [75] | Caplan S, Naslavsky N, Hartnell LM, Lodge R, Polishchuk RS, Donaldson JG, Bonifacino JS . A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J, 2002,21(11):2557-2567. | [76] | Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJ , McMahon HT. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature, 2007,449(7164):923-927. | [77] | van Dam EM, Stoorvogel W . Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell, 2002,13(1):169-182. | [78] | Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD , AMPH-1/Amphiphysin/Bin1 functions with RME-1/ Ehd1 in endocytic recycling. Nat Cell Biol, 2009,11(12):1399-1410. | [79] | Cavenagh MM, Whitney JA, Carroll K, Zhang CJ, Boman AL, Rosenwald AG, Mellman I, Kahn RA . Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem, 1996,271(36):21767-21774. | [80] | D'Souza-Schorey C, van Donselaar E, Hsu VW, Yang C, Stahl PD, Peters PJ . ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J Cell Biol, 1998,140(3):603-616. | [81] | Donaldson JG . Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem, 2003,278(43):41573-41576. | [82] | Casanova JE . Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic, 2007,8(11):1476-1485. | [83] | Liu SP, Wang L, Xue YH, Shou HX . Research progress in ARF-GEF gene family. Hereditas (Beijing), 2009,31(10):982-992. | [83] | 刘士平, 王璐, 薛艳红, 寿惠霞 . ARF-GEF基因家族的研究进展. 遗传, 2009,31(10):982-992. | [84] | Hongu T, Kanaho Y . Activation machinery of the small GTPase Arf6. Adv Biol Regul, 2013,54:59-66. | [85] | Derrien V, Couillault C, Franco M, Martineau S, Montcourrier P, Houlgatte R, Chavrier P . A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. J Cell Sci, 2002,115(Pt 14):2867-2879. | [86] | Hiroi T, Someya A, Thompson W, Moss J, Vaughan M . GEP100/BRAG2: activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and alpha-catenin. Proc Natl Acad Sci USA, 2006,103(28):10672-10677. | [87] | Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG . Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol, 2001,154(5):1007-1017. | [88] | Boshans RL, Szanto S, van Aelst L, D'Souza-Schorey C . ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol Cell Biol, 2000,20(10):3685-3694. | [89] | Palacios F, Price L, Schweitzer J, Collard JG, D'Souza-Schorey C . An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J, 2001,20(17):4973-4986. | [90] | Yin HL, Janmey PA . Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol, 2002,65:761-789. | [91] | Kinchen JM. Ravichandran KS . Journey to the grave: signaling events regulating removal of apoptotic cells. J Cell Sci, 2007,120(Pt 13):2143-2149. | [92] | Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, Macara IG, Madhani H, Fink GR, Ravichandran KS . Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol, 2002,4(8):574-582. | [93] | Reddien PW, Horvitz HR . CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol, 2000,2(3):131-136. | [94] | Cabello J, Neukomm LJ, Günesdogan U, Burkart K, Charette SJ, Lochnit G, Hengartner MO, Schnabel R . The wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol, 2010,8(2):e1000297. | [95] | Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG . ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci, 1999,112(Pt 6):855-866. | [96] | Sun L, Liu O, Desai J, Karbassi F, Sylvain MA, Shi A, Zhou Z, Rocheleau CE, Grant BD . CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2. PLoS Genet, 2012,8(7):e1002785. | [97] | TerBush DR, Maurice T, Roth D, Novick P . The exocyst is a multiprotein complex required for exocytosis in saccharomyces cerevisiae. EMBO J, 1996,15(23):6483-94. | [98] | Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C., Camonis J, Chavrier P . ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol, 2003,163(5):1111-1121. | [99] | F?lsch H, Pypaert M, Maday S, Pelletier L, Mellman I . The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J Cell Biol, 2003,163(2):351-362. | [100] | Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA . Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol, 2005,12(10):879-885. | [101] | Oztan A, Silvis M, Weisz OA, Bradbury NA, Hsu SC, Goldenring JR, Yeaman C, Apodaca G . Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol Biol Cell, 2007,18(10):3978-3992. | [102] | Chen S, Li L, Li J, Liu B, Zhu X, Zheng L, Zhang R, Xu T . SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci USA, 2014,111(43):15432-15437. | [103] | Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L . Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol, 2002,156(4):653-664. | [104] | Bonifacino JS, Hierro A . Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol, 2011,21(3):159-167. | [105] | Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS . EARP is a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol, 2015,17(5):639-650. | [106] | Di Paolo G, De Camilli P . Phosphoinositides in cell regulation and membrane dynamics. Nature, 2006,443(7112):651-657. | [107] | Novick P, Osmond BC, Botstein D . Suppressors of yeast actin mutations. Genetics, 1989,121(4):659-674. | [108] | Nemoto Y, Kearns BG, Wenk MR, Chen H, Mori K, Alb JG Jr, De Camilli, Bankaitis VA . Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem, 2000,275(44):34293-34305. | [109] | Blagoveshchenskaya A, Cheong FY, Rohde HM, Glover G, Kn?dler A, Nicolson T, Boehmelt G, Mayinger P . Integration of golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol, 2008,180(4):803-812. | [110] | Bajaj Pahuja K, Wang J, Blagoveshchenskaya A, Lim L, Madhusudhan MS, Mayinger P, Schekman R . Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum. Proc Natl Acad Sci USA, 2015,112(25):E3199-206. | [111] | Chen D, Yang C, Liu S, Hang W, Wang X, Chen J, Shi A . SAC-1 ensures epithelial endocytic recycling by restricting ARF-6 activity. J Cell Biol, 2018,217(6):2121-2139. | [112] | Gleason AM, Nguyen KC, Hall DH, Grant BD . Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol Biol Cell, 2016. | [113] | Delevoye C, Heiligenstein X, Ripoll L, Gilles-Marsens F, Dennis MK, Linares RA, Derman L, Gokhale A, Morel E, Faundez V, Marks MS, Raposo G . BLOC-1 brings together the actin and microtubule cytoskeletons to generate recycling endosomes. Curr Biol, 2015,26(1):1-13. | [114] | Schafer DA, D'Souza-Schorey C, Cooper JA . Actin assembly at membranes controlled by ARF6. Traffic, 2000,1(11):892-903. | [115] | Hendershott MC, Vale RD . Regulation of microtubule minus-end dynamics by CAMSAPs and patronin. Proc Natl Acad Sci USA, 2014,111(16):5860-5865. | [116] | Richardson CE, Spilker KA, Cueva JG, Perrino J, Goodman MB, Shen K . PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife, 2014,3:e01498. | [117] | Chuang M, Goncharov A, Wang S, Oegema K, Jin Y, Chisholm AD . The microtubule minus-end-binding protein patronin/PTRN-1 is required for axon regeneration in C. elegans. Cell Rep, 2014,9(3):874-883. | [118] | Gong T, Yan Y, Zhang J, Liu S, Liu H, Gao J, Zhou X, Chen J, Shi A . PTRN-1/CAMSAP promotes CYK-1/ formin-dependent actin polymerization during endocytic recycling. EMBO J, 2018,37(9):e98556. | [119] | Ferguson S, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, O' Toole E, De Camilli P . Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic Clathrin-Coated pits. Dev Cell, 2009,17(6):811-822. | [120] | Mitsunari T, Nakatsu F, Shioda N, Love PE Grinberg A, Bonifacino JS, Ohno H . Clathrin adaptor AP-2 is essential for early embryonal development. Mol Cell Biol, 2005,25(21):9318-9323. | [121] | Royle SJ . The cellular functions of clathrin. Cell Mol Life Sci, 2006,63(16):1823-1832. | [122] | Shi M, Zhang Y, Zhou GQ . The critical roles of TBC proteins in human diseases. Hereditas (Beijing), 2018,40(1):12-21. | [122] | 施梦婷, 张莹, 周钢桥 . TBC蛋白家族成员在人类疾病发生发展中的作用. 遗传, 2018,40(1):12-21. | [123] | Adjei IM, Sharma B, Labhasetwar V . Nanoparticles: cellular uptake and cytotoxicity,in nanomaterial: impacts on cell biology and medicine. D.G.apco and Y.Chen Editors. 2014, Springer Netherlands:Dordrecht. 73-91. | [124] | Esposito G, Ana Clara F, Verstreken P . Synaptic vesicle trafficking and parkinson's disease. Dev Neurobiol, 2012,72(1):134-144. | [125] | Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW . Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener, 2014,9(1):6. | [126] | Goldenring JR . A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer, 2013,13:813-820. | [127] | Tang FC, Xue YF . RNA interference and gene silencing. Hereditas (Beijing), 2001,23(2):167-266. | [127] | 汤富酬, 薛友纺 . RNA干涉与基因沉默. 遗传, 2001,23(2):167-266. | [128] | Ma XY, Zhao YL, Jia FX, Song YK, Tse YC . Utilization of Caenorhabditis elegans in laboratory teaching of genetics. Hereditas (Beijing), 2017,39(8):763-768. | [128] | 马小英, 赵颖岚, 贾方兴, 宋亚坤, 谢宇聪 . 秀丽隐杆线虫在高校遗传学实验中的应用. 遗传, 2017,39(8):763-768. | [129] | Zhang XM, Gao J, Chen CH, Tu HJ . Progress in the mechanisms of neural modulation of innate immunity in Caenorhabditis elegans. Hereditas (Beijing), 2018,40(12):1066-1074. | [129] | 张秀妹, 高洁, 陈春红, 涂海军 . 秀丽隐杆线虫固有免疫功能神经调控机制研究进展. 遗传, 2018,40(12):1066-1074. | [130] | Grant B, Hirsh D . Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell, 1999,10(12):4311-4326. | [131] | Fares H, Greenwald I . Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet, 2001,28(1):64-68. | [132] | Shi A, Grant BD . In vivo analysis of recycling endosomes in Caenorhabditis elegans. Method Cell Biol, 2015,130:181-198. | [133] | Chen B, Jiang Y, Zeng S, Yan J, Li X, Zhang Y, Zou W, Wang X . Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1. PLoS Genet, 2010,6(12):e1001235. | [134] | Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD . Regulation of endosomal clathrin and retromer- mediated endosome to golgi retrograde transport by the J-domain protein RME-8. EMBO J, 2009,28(21):3290-3302. |
|