遗传 ›› 2019, Vol. 41 ›› Issue (10): 950-961.doi: 10.16288/j.yczz.19-045
收稿日期:
2019-02-21
修回日期:
2019-06-17
出版日期:
2019-10-20
发布日期:
2019-07-04
通讯作者:
刘忠华
E-mail:liuzhonghua@neau.edu.cn
作者简介:
赵剑超,硕士研究生,专业方向:发育生物学。E-mail: 基金资助:
Jianchao Zhao,Zhuang Chai,Shimeng Guo,Zhonghua Liu()
Received:
2019-02-21
Revised:
2019-06-17
Online:
2019-10-20
Published:
2019-07-04
Contact:
Liu Zhonghua
E-mail:liuzhonghua@neau.edu.cn
Supported by:
摘要:
转录因子SOX2 (sex determining region Y-box2)在早期胚胎发育第一次谱系分化以及内细胞团多能性维持等方面具有重要的作用。但是目前有关SOX2基因启动子的系统研究较少,尤其是在猪(Sus scrofa)中尚无相关报道。为系统分析猪SOX2基因启动子在早期胚胎中的活性,本研究通过优化显微注射体系中绿色荧光蛋白表达载体种类和注射时间,构建了适合猪SOX2基因启动子活性分析的参照体系和显微注射体系;对猪SOX2基因翻译起始位点上游5000 bp区域进行转录因子结合位点的预测,发现该区域存在4个转录因子结合位点簇;针对上述区域设计并构建相应的缺失型SOX2基因启动子报告载体,利用建立的显微注射体系将其导入胚胎,通过mCherry荧光强度以及qRT-PCR定量分析SOX2基因启动子中不同转录因子结合位点簇对启动子活性的影响。结果表明,与全长SOX2基因启动子相比,SOX2基因翻译起始位点上游2254~2442 bp区域缺失后,猪4-细胞和8-细胞胚胎中SOX2基因启动子活性下降至17.8%,该缺失区域中仅包含两个NF-AT(nuclear factor of activated T cells)转录因子结合位点。因此,本研究结果推测猪SOX2基因启动子中NF-AT转录因子结合位点是影响猪早期胚胎SOX2基因启动子活性的关键位点。本研究为揭示猪早期胚胎发育中SOX2基因表达调控机制提供了数据支持。
赵剑超, 柴壮, 郭诗萌, 刘忠华. 猪早期胚胎发育中SOX2基因启动子活性分析[J]. 遗传, 2019, 41(10): 950-961.
Jianchao Zhao, Zhuang Chai, Shimeng Guo, Zhonghua Liu. Analysis of SOX2 gene promoter activity in porcine early embryonic development[J]. Hereditas(Beijing), 2019, 41(10): 950-961.
[1] | Sarkar A, Hochedlinger K . The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell, 2013,12(1):15-30. |
[2] | Liang S, Furuhashi M, Nakane R, Nakazawa S, Goudarzi H, Hamada J, Iizasa H . Isolation and characterization of human breast cancer cells with sox2 promoter activity. Biochem Bioph Res Co, 2013,437(2):205-211. |
[3] | Zhu F, Qian W, Zhang H, Liang Y, Wu M, Zhang Y, Zhang X, Gao Q, Li Y . Sox2 is a marker for stem-like tumor cells in bladder cancer. Stem Cell Rep, 2017,9(2):429-437. |
[4] | Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P . Targeted silencing of the oncogenic transcription factor sox2 in breast cancer. Nucleic Acids Res, 2012,40(14):6725-6740. |
[5] | Wang Z, Oron E, Nelson B, Razis S, Ivanova N . Distinct lineage specification roles for nanog, oct4, and sox2 in human embryonic stem cells. Cell Stem Cell, 2012,10(4):440-454. |
[6] | Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K . Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 2011,9(4):317-329. |
[7] | Hu Y H, Yao JH . Progress on pluripotency factors in zebrafish. Hereditas (Beijing), 2012,34(9):1097-1107. |
胡雨, 姚纪花 . 斑马鱼多能性因子的研究进展. 遗传, 2012,34(9):1097-1107. | |
[8] | Rizzino A, Wuebben EL . Sox2/oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta, 2016,1859(6):780-791. |
[9] | White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW, Mocskos E, Bruno L, Bissiere S, Levi V, Plachta N . Long-lived binding of sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell, 2016,165(1):75-87. |
[10] | Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R . Multipotent cell lineages in early mouse development depend on sox2 function. Genes Dev, 2003,17(1):126-140. |
[11] | Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A . Hippo pathway members restrict sox2 to the inner cell mass where it promotes icm fates in the mouse blastocyst. PLoS Genet, 2014,10(10):e1004618. |
[12] | Liu S, Bou G, Sun R, Guo S, Xue B, Wei R, Cooney AJ, Liu Z . Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev Dynam, 2015,244(4):619-627. |
[13] | Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L . Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol, 2009,1(1):46-54. |
[14] | Gu Q, Hao J, Hai T, Wang J, Jia Y, Kong Q, Wang J, Feng C, Xue B, Xie B, Liu S, Li J, He Y, Sun J, Liu L, Wang L, Liu Z, Zhou Q . Efficient generation of mouse escs-like pig induced pluripotent stem cells. Protein Cell, 2014,5(5):338-342. |
[15] | Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D . Generation of induced pluripotent stem cell lines from tibetan miniature pig. J Biol Chem, 2009,284(26):17634-17640. |
[16] | West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL . Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011,29(10):1640-1643. |
[17] | Fan N, Chen J, Shang Z, Dou H, Ji G, Zou Q, Wu L, He L, Wang F, Liu K, Liu N, Han J, Zhou Q, Pan D, Yang D, Zhao B, Ouyang Z, Liu Z, Zhao Y, Lin L, Zhong C, Wang Q, Wang S, Xu Y, Luan J, Liang Y, Yang Z, Li J, Lu C, Vajta G, Li Z, Ouyang H, Wang H, Wang Y, Yang Y, Liu Z, Wei H, Luan Z, Esteban MA, Deng H, Yang H, Pei D, Li N, Pei G, Liu L, Du Y, Xiao L, Lai L . Piglets cloned from induced pluripotent stem cells. Cell Res, 2013,23(1):162-166. |
[18] | Brevini T, Pennarossa G, Maffei S, Gandolfi F . Pluripotency network in porcine embryos and derived cell lines. Reprod Domest Anim, 2012,47(Suppl. 4):86-91. |
[19] | Roberts RM, Yuan Y, Genovese N, Ezashi T . Livestock models for exploiting the promise of pluripotent stem cells. ILAR J, 2015,56(1):74-82. |
[20] | Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A, Hupalowska A, Voet T, Marioni JC, Zernicka- Goetz M . Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos. Cell, 2016,165(1):61-74. |
[21] | Yang N, Wang Y, Hui L, Li X, Jiang X . Silencing sox2 expression by rna interference inhibits proliferation, invasion and metastasis, and induces apoptosis through map4k4/jnk signaling pathway in human laryngeal cancer tu212 cells. J Histochem Cytochem, 2015,63(9):721-733. |
[22] | Rinne A, Banach K, Blatter LA . Regulation of nuclear factor of activated t cells (nfat) in vascular endothelial cells. J Mol Cell Cardiol, 2009,47(3):400-410. |
[23] | Wiebe MS, Wilder PJ, Kelly D, Rizzino A . Isolation, characterization, and differential expression of the murine sox-2 promoter. Gene, 2000,246(1-2):383-393. |
[24] | Lis M, Walther D . The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genomics, 2016,17:185. |
[25] | Sikorska M, Sandhu JK, Deb-Rinker P, Jezierski A, Leblanc J, Charlebois C, Ribecco-Lutkiewicz M, Bani-Yaghoub M, Walker PR . Epigenetic modifications of sox2 enhancers, srr1 and srr2, correlate with in vitro neural differentiation. J Neurosci Res, 2008,86(8):1680-1693. |
[26] | Mojsin M, Topalovic V, Marjanovic Vicentic J, Stevanovic M . Transcription factor nf-y inhibits cell growth and decreases sox2 expression in human embryonal carcinoma cell line nt2/d1. Biochemistry (Mosc), 2015,80(2):202-207. |
[27] | Wiebe MS, Wilder PJ, Kelly D, Rizzino A . Isolation, characterization, and differential expression of the murine sox-2 promoter. Gene, 2000,246(1-2):383-393. |
[28] | Di Stefano B, Sardina JL, van Oevelen C, Collombet S, Kallin EM, Vicent GP, Lu J, Thieffry D, Beato M, Graf T . C/EBPαpoises b cells for rapid reprogramming into induced pluripotent stem cells. Nature, 2014,506(7487):235-239. |
[29] | Bueno C, Sardina JL, Di Stefano B, Romero-Moya D, Mu?oz-López A, Ariza L, Chillón MC, Balanzategui A, Casta?o J, Herreros A, Fraga MF, Fernández A, Granada I, Quintana-Bustamante O, Segovia JC, Nishimura K, Ohtaka M, Nakanishi M, Graf T, Menendez P . Reprogramming human b cells into induced pluripotent stem cells and its enhancement by c/EBPα. Leukemia, 2016,30(3):674-682. |
[30] | Borrelli S, Fanoni D, Dolfini D, Alotto D, Ravo M, Grober OM, Weisz A, Castagnoli C, Berti E, Vigano MA, Mantovani R . C/EBPδgene targets in human keratinocytes. PLoS One, 2010,5(11):e13789. |
[31] | Kel A, Kel-Margoulis O, Babenko V, Wingender E . Recognition of nfatp/ap-1 composite elements within genes induced upon the activation of immune cells. J Mol Biol, 1999,288(3):353-376. |
[32] | Mantovani R . A survey of 178 nf-y binding ccaat boxes. Nucleic Acids Res, 1998,26(5):1135-1143. |
[33] | Grange T, Roux J, Rigaud G, Pictet R . Cell-type specific activity of two glucocorticoid responsive units of rat tyrosine aminotransferase gene is associated with multiple binding sites for c/ebp and a novel liver-specific nuclear factor. Nucleic Acids Res, 1991,19(1):131-139. |
[34] | Roth C, Schuierer M, Günther K, Buettner R . Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor ap-2rep (klf12). Genomics, 2000,63(3):384-390. |
[35] | Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N . Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics, 2014,15:4. |
[36] | Hilger-Eversheim K, Moser M, Schorle H, Buettner R . Regulatory roles of ap-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene, 2000,260(1-2):1-12. |
[37] | Macián F, López-Rodriguez C, Rao A . Partners in transcription: Nfat and ap-1. Oncogene, 2001,20(19):2476-2489. |
[38] | Ning Ding, Yuan Gao, Wang N, Li H . Functional analysis of the chicken pparγ gene 5′flanking region and c/EBPα mediated gene regulation. Comp Biochem Phys B, 2011,158(4):297-303. |
[39] | Cheng M, Zhang WJ, Xing TY, Yan XH, Li YM, Li H, Wang N . Functional analysis of the upstream regulatory region of chicken mir-17-92 cluster. Hereditas (Beijing), 2016,38(8):724-735. |
程敏, 张文建, 邢天宇, 闫晓红, 李玉茂, 李辉, 王宁 . 鸡miR-17-92基因簇上游调控区功能分析. 遗传, 2016,38(8):724-735. | |
[40] | Yu L, Domann FE . Rapid and direct quantitative rt-pcr method to measure promoter activity. Biotechnol Prog, 2006,22(5):1461-1463. |
[41] | Zhang S, Magnusson G . Kilham polyomavirus: activation of gene expression and DNA replication in mouse fibroblast cells by an enhancer substitution. J Virol, 2001,75(21):10015-10023. |
[42] | Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA . Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013,153(2):307-319. |
[1] | 李亚楠, 张贤君, 张宁, 梁雅琳, 张宇星, 招华兴, 李紫聪, 黄思秀. 过表达组蛋白H3K9me3去甲基化酶对猪克隆胚胎发育的影响[J]. 遗传, 2023, 45(1): 67-77. |
[2] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[3] | 唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[4] | 周子文, 王雪, 丁向东. 基于高密度SNP标记估计群体间遗传关联[J]. 遗传, 2021, 43(4): 340-349. |
[5] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[6] | 魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[7] | 韩程程, 夏凯, 龚茹莹, 吴栩涵, 张蕾, 梁新乐. 适于检测非洲猪瘟病毒的点亮Spinach-p54 RNA适配体的设计及应用[J]. 遗传, 2021, 43(12): 1170-1178. |
[8] | 邢宝松, 王璟, 陈俊峰, 马强, 任巧玲, 张家庆, 张华, 滑留帅, 孙加节, 曹海. 去势和非去势公猪背最长肌circRNA差异表达分析[J]. 遗传, 2021, 43(11): 1066-1077. |
[9] | 周俊, 赵成成, 吴霄, 石俊松, 周荣, 吴珍芳, 李紫聪. 猪耳成纤维细胞转录组异质性及对核移植胚胎发育的潜在影响[J]. 遗传, 2020, 42(9): 898-915. |
[10] | 任巧玲, 张家庆, 陆东锋, 王璟, 陈俊峰, 马强, 白献晓, 郭红霞, 高彬文, 邢宝松. 乏情和发情初产母猪下丘脑-垂体-卵巢轴中lincRNAs表达谱比较分析[J]. 遗传, 2020, 42(4): 388-402. |
[11] | 杨岸奇, 陈斌, 冉茂良, 杨广民, 曾诚. 基因组选择在猪杂交育种中的应用[J]. 遗传, 2020, 42(2): 145-152. |
[12] | 王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[13] | 敖政, 陈祥, 吴珍芳, 李紫聪. 体细胞克隆猪发育异常研究进展[J]. 遗传, 2020, 42(10): 993-1003. |
[14] | 莫健新,王豪强,黄广燕,蔡更元,吴珍芳,张献伟. 微生物源果胶酶在猪PK15细胞中异源表达及其酶学性质分析[J]. 遗传, 2019, 41(8): 736-745. |
[15] | 周李生, 赵为民, 涂枫, 吴云鹤, 任守文, 方晓敏. 猪乳头性状生理学和遗传学研究进展[J]. 遗传, 2019, 41(5): 384-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: