遗传 ›› 2021, Vol. 43 ›› Issue (1): 66-73.doi: 10.16288/j.yczz.20-245
收稿日期:
2020-09-18
修回日期:
2020-12-07
出版日期:
2021-01-20
发布日期:
2020-12-10
通讯作者:
陆光涛
E-mail:lugt@gxu.edu.cn
作者简介:
刘国芳,博士,副教授,研究方向:植物保护。E-mail: 基金资助:
Guofang Liu1, Xinxin Wang2, Huizhao Su2, Guangtao Lu2()
Received:
2020-09-18
Revised:
2020-12-07
Online:
2021-01-20
Published:
2020-12-10
Contact:
Lu Guangtao
E-mail:lugt@gxu.edu.cn
Supported by:
摘要:
GntR家族转录调控因子是细菌中分布最为广泛的一类螺旋-转角-螺旋(helix-turn-helix,HTH)转录调控因子,此家族转录调控因子包含两个功能域,分别是N端的DNA结合结构域和C端的效应物结合结构域/寡聚化作用结构域。DNA结合结构域的氨基酸序列是非常保守的,但效应物结合结构域/寡聚化作用结构域的氨基酸序列却存在很大的差异性。目前许多GntR家族的转录调控因子已经被鉴定,这些转录因子调控细菌许多不同的细胞过程,如运动性、葡萄糖代谢、细菌的耐药性、病原细菌的致病力等。本文主要阐述了GntR家族转录调控因子的发现、二级结构、生物学功能、调控模式等方面的研究进展,旨在为研究者全面、深入地了解GntR家族转录调控因子的功能及作用机理提供帮助。
刘国芳, 王欣欣, 苏辉昭, 陆光涛. 细菌GntR家族转录调控因子的研究进展[J]. 遗传, 2021, 43(1): 66-73.
Guofang Liu, Xinxin Wang, Huizhao Su, Guangtao Lu. Progress on the GntR family transcription regulators in bacteria[J]. Hereditas(Beijing), 2021, 43(1): 66-73.
[1] |
Majidian P, Kuse J, Tanaka K, Najafi H, Zeinalabedini M, Takenaka S, Yoshida KI . Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. J Gen Appl Microbiol, 2017,62(6):277-285.
doi: 10.2323/jgam.2016.05.004 pmid: 27829583 |
[2] |
Pabo CO, Sauer RT . Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem, 1992,61:1053-1095.
doi: 10.1146/annurev.bi.61.070192.005201 pmid: 1497306 |
[3] |
Haydon DJ, Guest JR . A new family of bacterial regulatory proteins. FEMS Microbiol Lett, 1991,63(2-3):291-295.
doi: 10.1016/0378-1097(91)90101-f pmid: 2060763 |
[4] |
Fujita Y, Fujita R . New diagnostic systems--technics, efficiency and limitations. Cholangioscopy. a) Peroral cholangioscopy. Nihon Rinsho, 1987,45(7):1466-1471.
pmid: 3669339 |
[5] |
Hoskisson PA, Rigali S . Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol, 2009,69:1-22.
doi: 10.1016/S0065-2164(09)69001-8 pmid: 19729089 |
[6] |
Suvorova IA, Korostelev YD, Gelfand MS . GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One, 2015,10(7):e0132618.
doi: 10.1371/journal.pone.0132618 pmid: 26151451 |
[7] |
Vindal V, Suma K, Ranjan A . GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC Genomics, 2007,8:289.
doi: 10.1186/1471-2164-8-289 pmid: 17714599 |
[8] |
Zheng MY, Cooper DR, Grossoehme NE, Yu MM, Hung LW, Cieslik M, Derewenda U, Lesley SA, Wilson IA, Giedroc DP, Derewenda ZS . Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn 2+-binding FCD domains. Acta Crystallogr D Biol Crystallogr , 2009,65(Pt 4):356-365.
doi: 10.1107/S0907444909004727 pmid: 19307717 |
[9] |
van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK . Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J, 2000,19(19):5167-5177.
doi: 10.1093/emboj/19.19.5167 pmid: 11013219 |
[10] |
Rigali S, Derouaux A, Giannotta F, Dusart J . Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem, 2002,277(15):12507-12515.
doi: 10.1074/jbc.M110968200 pmid: 11756427 |
[11] |
Allison SL, Phillips AT . Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J Bacteriol, 1990,172(9):5470-5476.
doi: 10.1128/jb.172.9.5470-5476.1990 pmid: 2203753 |
[12] |
Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA . Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLoS One, 2016,11(6):e0157691.
doi: 10.1371/journal.pone.0157691 pmid: 27337024 |
[13] |
Milano T, Angelaccio S, Tramonti A, Di Salvo ML, Contestabile R, Pascarella S . Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators. Biochim Open, 2016,3:8-18.
doi: 10.1016/j.biopen.2016.07.002 pmid: 29450126 |
[14] |
Gao YG, Yao M, Itou H, Zhou Y, Tanaka I . The structures of transcription factor CGL2947 from Corynebacterium glutamicum in two crystal forms: A novel homodimer assembling and the implication for effector-binding mode. Protein Sci, 2007,16(9):1878-1886.
doi: 10.1110/ps.072976907 pmid: 17766384 |
[15] |
Yoshida KI, Fujita Y, Ehrlich SD . An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. J Bacteriol, 2000,182(19):5454-5461.
doi: 10.1128/jb.182.19.5454-5461.2000 pmid: 10986249 |
[16] |
Gu D, Meng HM, Li Y, Ge HJ, Jiao XN . A GntR family transcription factor (VPA1701) for swarming motility and colonization of Vibrio parahaemolyticus. Pathogens, 2019,8(4):235.
doi: 10.3390/pathogens8040235 |
[17] |
Hoskisson PA, Rigali S, Fowler K, Findlay KC, Buttner MJ . DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol, 2006,188(14):5014-5023.
doi: 10.1128/JB.00307-06 pmid: 16816174 |
[18] |
Daddaoua A, Corral-Lugo A, Ramos JL, Krell T . Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ Microbiol, 2017,19(9):3721-3733.
doi: 10.1111/1462-2920.13871 pmid: 28752954 |
[19] |
Truong-Bolduc QC, Hooper DC . The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and beta-lactams in Staphylococcus aureus. J Bacteriol, 2007,189(8):2996-3005.
doi: 10.1128/JB.01819-06 pmid: 17277059 |
[20] |
Li ZQ, Wang SL, Zhang H, Zhang JL, Xi L, Zhang JB, Chen CF . Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages. World J Microbiol Biotechnol, 2017,33(3):60.
doi: 10.1007/s11274-017-2230-9 pmid: 28243986 |
[21] |
Zhou XF, Yan Q, Wang N . Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. Mol Plant Pathol, 2017,18(2):249-262.
doi: 10.1111/mpp.12397 pmid: 26972728 |
[22] |
Zhou Y, Nie RN, Liu XY, Kong JH, Wang XH, Li JQ . GntR is involved in the expression of virulence in strain Streptococcus suis P1/7. FEMS Microbiol Lett, 2018,365(14).
doi: 10.1093/femsle/fny052 pmid: 29514248 |
[23] |
Gao RS, Li DF, Lin Y, Lin JX, Xia XY, Wang H, Bi LJ, Zhu J, Hassan B, Wang SH, Feng YJ . Structural and functional characterization of the FadR regulatory protein from Vibrio alginolyticus. Front Cell Infect Microbiol, 2017,7:513.
doi: 10.3389/fcimb.2017.00513 pmid: 29312893 |
[24] |
Huang WL, Wilks A . A rapid seamless method for gene knockout in Pseudomonas aeruginosa. BMC Microbiol, 2017,17(1):199.
doi: 10.1186/s12866-017-1112-5 pmid: 28927382 |
[25] |
Wang TT, Qi YH, Wang ZH, Zhao JR, Ji LX, Li J, Cai Z, Yang L, Wu M, Liang HH . Coordinated regulation of anthranilate metabolism and bacterial virulence by the GntR family regulator MpaR in Pseudomonas aeruginosa. Mol Microbiol, 2020,114(5):857-869.
doi: 10.1111/mmi.14584 pmid: 32748556 |
[26] |
Li ZB, Xiang ZT, Zeng JM, Li YQ, Li JY . A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front Microbiol, 2019,9:3224.
doi: 10.3389/fmicb.2018.03224 pmid: 30692967 |
[27] |
Wu KF, Xu HM, Zheng YQ, Wang LB, Zhang XM, Yin YB . CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep, 2016,6:29255.
doi: 10.1038/srep29255 pmid: 27386955 |
[28] |
Truong-Bolduc QC, Dunman PM, Eidem T, Hooper DC . Transcriptional profiling analysis of the global regulator NorG, a GntR-Like protein of Staphylococcus aureus. J Bacteriol, 2011,193(22):6207-6214.
doi: 10.1128/JB.05847-11 |
[29] |
An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL . Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. Mol Plant Microbe Interact, 2011,24(9):1027-1039.
doi: 10.1094/MPMI-08-10-0180 pmid: 21615202 |
[30] |
Su HZ, Wu L, Qi YH, Liu GF, Lu GT, Tang JL . Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris. Sci Rep, 2016,6:19862.
doi: 10.1038/srep19862 pmid: 26818230 |
[31] |
Liu GF, Su HZ, Sun HY, Lu GT, Tang JL . Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp. Mol Plant Pathol, 2019,20(1):51-68.
doi: 10.1111/mpp.12739 pmid: 30091270 |
[32] |
Zhou XF, Yan Q, Wang N . Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. Mol Plant Pathol, 2017,18(2):249-262.
doi: 10.1111/mpp.12397 pmid: 26972728 |
[33] |
Chi WJ . Retracted: DasR, a GntR-family global regulator, regulates N-acetylglucosamine metabolism in Streptomyces griseus. J Microbiol Biotechnol, 2017.
doi: 10.4014/jmb.2011.11029 pmid: 33263336 |
[34] |
Taw MN, Lee HI, Lee SH, Chang WS . Characterization of MocR, a GntR-like transcriptional regulator, in Bradyrhizobium japonicum: its impact on motility, biofilm formation, and soybean nodulation. J Microbiol, 2015,53(8):518-525.
doi: 10.1007/s12275-015-5313-z pmid: 26224454 |
[35] |
Browning DF, Busby SJ . The regulation of bacterial transcription initiation. Nat Rev Microbiol, 2004,2(1):57-65.
doi: 10.1038/nrmicro787 pmid: 15035009 |
[1] | 吕柯孬, 潘学峰. 人类神经退行性疾病相关的三核苷酸重复DNA序列不稳定性机制研究进展[J]. 遗传, 2021, 43(9): 835-848. |
[2] | 肇涛澜, 张硕, 钱文峰. 翻译延伸的顺式调控机理与生物学效应[J]. 遗传, 2020, 42(7): 613-631. |
[3] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[4] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[5] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[6] | 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能[J]. 遗传, 2014, 36(6): 536-546. |
[7] | 王宏 李刚波 张大勇 蔺经 盛宝龙 韩金龙 常有宏. 植物HD-Zip转录因子的生物学功能[J]. 遗传, 2013, 35(10): 1179-1188. |
[8] | 张计育,王庆菊,郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7): 835-847. |
[9] | 罗军玲,赵娜,卢长明. 植物Trihelix转录因子家族研究进展[J]. 遗传, 2012, 34(12): 1551-1560. |
[10] | 杨超,汪青雄,黄原,肖红. 棕头鸥线粒体基因组全序列测定与分析[J]. 遗传, 2012, 34(11): 1434-1446. |
[11] | 高运臻,潘玉春. 转录因子CCAAT增强子结合蛋白β(C/EBP β)的研究进展[J]. 遗传, 2011, 33(3): 198-206. |
[12] | 柯杨,黄原,雷富民. 黑尾地鸦线粒体基因组序列测定与分析[J]. 遗传, 2010, 32(9): 951-960. |
[13] | 封华,陈晨,王义琴,邱金龙,储成才,杜希华 . 植物可溶性N-乙基马来酰亚胺敏感因子连接物复合体(SNAREs)及其生物学功能研究进展[J]. 遗传, 2009, 31(5): 471-478. |
[14] | 鄂志国,王磊 . 水稻抗病性基因的克隆和功能研究进展[J]. 遗传, 2009, 31(10): 999-1005. |
[15] | 余文博,江松敏,余龙. 先天性聋哑会遗传吗?[J]. 遗传, 2008, 30(9): 1107-1107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: