遗传 ›› 2022, Vol. 44 ›› Issue (9): 756-771.doi: 10.16288/j.yczz.22-198
收稿日期:
2022-06-15
修回日期:
2022-08-03
出版日期:
2022-09-20
发布日期:
2022-08-26
通讯作者:
许强华
E-mail:823050631@qq.com;qhxu@shou.edu.cn
作者简介:
孙凤宇,在读硕士研究生,专业方向:海洋生物学、分子生物学。E-mail: 基金资助:
Fengyu Sun1(), Qianghua Xu1,2,3,4()
Received:
2022-06-15
Revised:
2022-08-03
Online:
2022-09-20
Published:
2022-08-26
Contact:
Xu Qianghua
E-mail:823050631@qq.com;qhxu@shou.edu.cn
Supported by:
摘要:
血液发生对生命体有着十分重要的意义。脊椎动物的血液发生主要表现为造血干细胞的自我更新和分化、造血祖细胞的增殖分化以及血细胞的成熟。血液发生过程的调控涉及多种转录因子、膜受体、造血生长因子和microRNAs等,它们之间相互作用形成多种信号通路及信号通路网。microRNAs是一类非编码RNA,广泛分布于真核生物细胞中,在机体的造血过程中发挥着重要作用。microRNAs的表达受造血相关信号通路中转录因子的调控,而microRNAs的表达能抑制或降低参与造血相关信号通路的转录因子以及更多造血相关调控因子的表达,从而影响血细胞发生相关的信号通路,进而调控造血过程。本文主要介绍了脊椎动物造血过程和血细胞发生相关信号通路,并围绕microRNAs与造血相关转录因子及信号通路之间的作用关系,总结了microRNAs调控血液发生的相关研究进展。
孙凤宇, 许强华. 血液发生相关microRNAs研究进展[J]. 遗传, 2022, 44(9): 756-771.
Fengyu Sun, Qianghua Xu. Research progress of microRNAs involved in hematopoiesis[J]. Hereditas(Beijing), 2022, 44(9): 756-771.
"
调控方式/祖细胞 | miRNA | 靶基因或参与通路 | 参考文献 |
---|---|---|---|
促进自我更新和抑制分化 | miR-199 | Klf12、Tox3、Cdk18 | [ |
miR-127-3p | [ | ||
miR-125a | c-kit等 | [ | |
miR-22 | Tet2 | [ | |
miR-143、miR-145 | TGF-β通路 | [ | |
miR-29a | Dnmt3a | [ | |
维持静止状态 | miR-126 | PI3K/Akt/GSK3β通路 | [ |
miR-21 | Pdcd4;NF-κB通路 | [ | |
在机体应激、老化和接受辐射 状态下抑制凋亡、促进再生 | miR-132 | Foxo3 | [ |
miR-146a | Traf6 | [ | |
miR-21 | [ | ||
miR-34a | [ | ||
髓系祖细胞(CMP) | mirn23a | PI3K/Akt通路、BMP/Smad通路 | [ |
miR-125b | Lin28A | [ | |
巨核/红系祖细胞(MEP) | miR-125b-2 | Dicer1、St18 | [ |
淋巴祖细胞(CLP) | miR-125b | Bmf、Klf13 | [ |
"
调控方式 | miRNA | 靶基因或参与通路 | 参考文献 |
---|---|---|---|
促进红细胞分化 | miR-144/451 miR-142 | [ | |
miR-27a、miR-24 | GATA-1/2 switch—miR-27a/24—GATA-2环 | [ | |
miR-23a | Shp2 | [ | |
miR-15a | c-myb | [ | |
miR-17-92 | Tal1 | [ | |
miR-486-5p | Foxo1、Pten;Akt通路 | [ | |
控制血红蛋白合成与积累、染色质 凝结和去核及红细胞结构维持 | miR-462-731 | [ | |
let-7 | Lin28b—let-7—Hmga2轴 | [ | |
miR-451 | [ | ||
miR-142 | Cfl2、Grlf1、Wasl | [ | |
在极端环境下促进红细胞生成 | miR-210-3p | 可能是Smad2 | [ |
miR-486-5p | Magi1、Rassf5;Rap1通路 | [ | |
MEP发育至成熟巨核细胞 | miR-22 | Gfi1 | [ |
miR-126、miR-150 | c-myb | [ | |
miR-1273g-3p miR-619-5p | Cdk10、Cdk11、CyclinF | [ | |
miR-1915-3p | Rhob;Rho/ROCK通路 | [ | |
miR-146b | Nolc1 | [ |
"
调控过程 | miRNA | 靶基因或参与通路 | 参考文献 |
---|---|---|---|
NK细胞的发育和成熟 | miR-150 miR-15/16 | c-myb | [ |
同时作用于B和T两种淋巴 细胞的增殖、发育和稳态 | miR-181 | Pten;PI3K通路 | [ |
miR-150 | c-myb;Notch通路 | [ | |
miR-142-3p | Baff-r、Cdkn1b | [ | |
祖B细胞产生成熟B细胞 | miR-17~92 | Bim | [ |
miR-29 | Pten;PI3K通路 | [ | |
miR-191 | Tcf3、Egr1、Foxp1 | [ | |
miR-29c | Rag1 | [ | |
祖T细胞产生成熟T细胞 | miR-191 | Irs1 | [ |
miR-150 | c-myb、Pdap1 | [ | |
miR-33a/b miR-181a | S1pr1 | [ | |
miR-181a | TCRa、CD69、Bcl2;Notch通路、 pre-TCR信号通路 | [ |
[1] | Sun JG, Liao RX, Zhou DJ . MicroRNA regulates hematopoietic stem cell development. Chin J Biochem Mol Biol, 2008,24(7):593-596. |
孙建国, 廖荣霞, 周度金 . MicroRNA调控造血干细胞发育. 中国生物化学与分子生物学报, 2008,24(7):593-596. | |
[2] | Jin W, Liu YC, Zhang SH, Hu JL, Ren XC, Zhang YC . Advances in the research of fish blood cells. J Anhui Agric Sci, 2018,46(12):27-30. |
晋伟, 刘逸尘, 张树花, 胡锦丽, 任星潮, 张亦陈 . 鱼类血细胞研究进展. 安徽农业科学, 2018,46(12):27-30. | |
[3] | Wang L, Zhang CX, Liu F . Molecular mechanisms of hematopoietic stem cell development. Sci China: Life Sci, 2016,46(1):16-24. |
王璐, 张春霞, 刘峰 . 造血干细胞发育的分子机制. 中国科学: 生命科学, 2016,46(1):16-24. | |
[4] | Feng ZW, Li CY . Hematopoietic stem cells and hematopoietic regulatory signaling pathways. Lab Med Clin, 2011,8(17):2122-2124. |
冯志伟, 李长燕 . 造血干细胞与造血相关调控信号通路. 检验医学与临床, 2011,8(17):2122-2124. | |
[5] | Zhang CX, Liu F . Regulatory signaling pathways in hematopoietic stem cell development. Hereditas (Beijing), 2021,43(4):295-307. |
张春霞, 刘峰 . 造血干细胞发育过程中的信号通路调控. 遗传, 2021,43(4):295-307. | |
[6] | Yu MR, Fan SY, Ma QW, Zeng FY . Research progress of Wnt signaling pathway regulating hematopoietic stem cell self-renewal. Chin Bull Life Sci, 2020,32(5):413-423. |
喻梦茹, 范书玥, 马晴雯, 曾凡一 . Wnt信号通路调控造血干细胞自我更新的研究进展. 生命科学, 2020,32(5):413-423. | |
[7] | Gong XP, Chao RH, Wang PX, Huang XL, Zhang JJ, Zhu XZ, Zhang YY, Yang X, Hou C, Ji XJ, Shi TL, Wang Y . Interplay of transcription factors and microRNAs during embryonic hematopoiesis. Sci China Life Sci, 2017,60(2):168-177. |
[8] | Su ZH, Si WX, Li L, Zhou BS, Li XC, Xu Y, Xu CQ, Jia HB, Wang QK . MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development. Int J Biochem Cell Biol, 2014,49:53-63. |
[9] | Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008,132(4):631-644. |
[10] | Cao XT. Medical Immunology ( 7th Ed.). Beijing: People's Medical Press, 2018. |
曹雪涛 . 医学免疫学(第7版). 北京: 人民卫生出版社, 2018. | |
[11] | Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297. |
[12] | Lu XY, Wei YL, Liu F . Direct regulation of p53 by miR-142a-3p mediates the survival of hematopoietic stem and progenitor cells in zebrafish. Cell Discov, 2015,1:15027. |
[13] | Lu XY, Li XJ, He QP, Gao J, Gao Y, Liu B , Liu F. miR-142-3p regulates the formation and differentiation of hematopoietic stem cells in vertebrates. Cell Res, 2013,23(12):1356-1368. |
[14] | Karaczyn AA, Jachimowicz E, Kohli JS, Sathyanarayana P . Loss of miR-199b impairs active cycling of hematopoietic stem cells during steady-state hematopoiesis. Blood, 2018,132(Supplement 1):1283. |
[15] | Crisafulli L, Muggeo S, Uva P, Wang YL, Iwasaki M, Locatelli S, Anselmo A, Colombo FS, Carlo-Stella C, Cleary ML, Villa A, Gentner B, Ficara F . MicroRNA- 127-3p controls murine hematopoietic stem cell maintenance by limiting differentiation. Haematologica, 2019,104(9):1744-1755. |
[16] | Wojtowicz EE, Broekhuis MJC, Weersing E, Dinitzen A, Verovskaya E, Ausema A, Ritsema M , Zwart E, de Haan G, Bystrykh LV. MiR-125a enhances self-renewal, lifespan, and migration of murine hematopoietic stem and progenitor cell clones. Sci Rep, 2019,9(1):4785. |
[17] | Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM, Jongen-Lavrencic M, Manova-Todorova K, Teruya- Feldstein J, Avigan DE, Delwel R, Pandolfi PP . The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self- renewal and transformation. Cell Stem Cell, 2013,13(1):87-101. |
[18] | Lam JC, Wegrzyn-Woltosz J, Ibrahim R, Slowski K, Umlandt P, Fuller M, Karsan A . Loss of miR-143 and miR-145 inhibits hematopoietic stem cell self-renewal through dysregulated TGFβ signaling. Blood, 2014,124(21):527-527. |
[19] | Hu WH, Dooley J, Chung SS, Chandramohan D, Cimmino L, Mukherjee S , Mason CE, de Strooper B, Liston A, Park CY. miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood, 2015,125(14):2206-2216. |
[20] | Lechman ER , Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Hiramatsu H, Restuccia U, Bachi A, Voisin V, Bader GD, Dick JE, Naldini L. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell, 2012,11(6):799-811. |
[21] | Hu MJ, Lu YK, Zeng H, Zhang ZH, Chen SL, Qi Y, Xu Y, Chen F, Tang Y, Chen M, Du CH, Shen MQ, Wang FC, Su YP, Wang S, Wang JP . MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica, 2021,106(2):412-423. |
[22] | Mehta A, Zhao JL, Sinha N, Marinov GK, Mann M, Kowalczyk MS, Galimidi RP, Du XM, Erikci E, Regev A, Chowdhury K, Baltimore D . The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity, 2015,42(6):1021-1032. |
[23] | Zhao JL, Rao DS , O'Connell RM, Garcia-Flores Y, Baltimore D. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLife, 2013,2:e00537. |
[24] | Puccetti MV, Adams CM, Dan TD, Palagani A, Simone BA , DeAngelis T, Eischen CM, Simone NL. MicroRNA- 21 is required for hematopoietic cell viability after radiation exposure. Int J Radiat Oncol Biol Phys, 2019,104(5):1165-1174. |
[25] | Zeng H, Hu MJ, Lu YK, Zhang ZH, Xu Y, Wang S, Chen M, Shen MQ, Wang C, Chen F, Du CH, Tang Y, Su YP, Chen SL, Wang JP . MicroRNA 34a promotes ionizing radiation-induced DNA damage repair in murine hematopoietic stem cells. FASEB J, 2019,33(7):8138-8147. |
[26] | Kurkewich JL, Boucher A, Klopfenstein N, Baskar R, Kapur R, Dahl R . The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp Hematol, 2018,59:14-29. |
[27] | Kurkewich JL, Hansen J, Klopfenstein N, Zhang H, Wood C, Boucher A, Hickman J, Muench DE, Grimes HL, Dahl R . The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet, 2017,13(7):e1006887. |
[28] | Chaudhuri AA, So AYL, Mehta A, Minisandram A, Sinha N, Jonsson VD, Rao DS , O'Connell RM, Baltimore D. Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci USA, 2012,109(11):4233-4238. |
[29] | Klusmann JH, Li Z, Böhmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH , Reinhardt D. miR- 125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev, 2010,24(5):478-490. |
[30] | Ooi AGL, Sahoo D, Adorno M, Wang YL, Weissman IL, Park CY . MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA, 2010,107(50):21505-21510. |
[31] | Wang F, Zhu Y, Guo LH, Dong L, Liu HW, Yin HX, Zhang ZZ, Li YX, Liu CZ, Ma YN, Song W, He AB, Wang Q, Wang LF, Zhang JW, Li JX, Yu J . A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic Acids Res, 2014,42(1):442-457. |
[32] | Zhang L, Sankaran VG, Lodish HF . MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte-erythroid progenitor lineage commitment. Leukemia, 2012,26(11):2310-2316. |
[33] | Xu QH, Cai C, Hu XX, Liu YN, Guo Y, Hu P, Chen ZZ, Peng SH, Zhang DS, Jiang SW, Wu ZC, Chan JL, Chen LB . Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish. Mol Ecol, 2015,24(18):4664-4678. |
[34] | Huang CX, Huang Y, Duan XK, Zhang M, Tu JP, Liu JX, Liu H, Chen TS, Wang WM, Wang HL . Zebrafish miR-462-731 regulates hematopoietic specification and pu.1-dependent primitive myelopoiesis. Cell Death Differ, 2019,26(8):1531-1544. |
[35] | Zh Y . Function and mechanism of microRNA-23a/ 27a/24-2 in erythroid differentiation[Dissertation]. Peking Union Medical College, 2014. |
朱勇 . MicroRNA-23a/27a/24-2在红系分化中的功能及作用机制研究[学位论文]. 北京协和医学院, 2014. | |
[36] | Wang LS, Li L, Li L, Chu S, Shiang KD, Li M, Sun HY, Xu J, Xiao FJ, Sun GH, Rossi JJ, Ho YW, Bhatia R . MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood, 2015,125(8):1302-1313. |
[37] | Zhao HW, Kalota A, Jin SH, Gewirtz AM . The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood, 2009,113(3):505-516. |
[38] | Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J . The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep, 2020,10(1):21438. |
[39] | Rowe RG, Wang LD, Coma S, Han A, Mathieu R, Pearson DS, Ross S, Sousa P, Nguyen PT, Rodriguez A, Wagers AJ, Daley GQ . Developmental regulation of myeloerythroid progenitor function by the Lin28b-let-7-Hmga2 axis. J Exp Med, 2016,213(8):1497-1512. |
[40] | Noh SJ, Miller SH, Lee YT, Goh SH, Marincola FM, Stroncek DF, Reed C, Wang E, Miller JL . Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med, 2009,7:98. |
[41] | Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ . MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol, 2007,35(7):1015-1025. |
[42] | Rivkin N, Chapnik E, Mildner A, Barshtein G, Porat Z, Kartvelishvily E, Dadosh T, Birger Y, Amir G, Yedgar S, Izraeli S, Jung S, Hornstein E . Erythrocyte survival is controlled by microRNA-142. Haematologica, 2017,102(4):676-685. |
[43] | Hu CY, Yan YP, Fu CB, Ding J, Li TT, Wang SQ, Fang L . Effects of miR-210-3p on the erythroid differentiation of K562 cells under hypoxia. Mol Med Rep, 2021,24(2):563. |
[44] | Ma XJ, Zhang X, Luo J, Liang BX, Peng J, Chen CY, Guo HY, Wang Q, Xing XM, Deng QF, Huang HH, Liao QL, Chen W, Hu QS, Yu DK, Xiao YM . MiR-486-5p-directed MAGI1/Rap1/RASSF5 signaling pathway contributes to hydroquinone-induced inhibition of erythroid differentiation in K562 cells. Toxicol In Vitro, 2020,66:104830. |
[45] | Weiss CN, Ito K. microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood Adv, 2019,3(1):33-46. |
[46] | Grabher C, Payne EM, Johnston AB, Bolli N, Lechman E, Dick JE, Kanki JP, Look AT . Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia, 2011,25(3):506-514. |
[47] | Sahu I, Hebalkar R, Kar S, Ts S, Gutti U, Gutti RK . Systems biology approach to study the role of miRNA in promoter targeting during megakaryopoiesis. Exp Cell Res, 2018,366(2):192-198. |
[48] | Qu MY, Zou XJ, Fang F, Wang SY, Xu L, Zeng Q, Fan Z, Chen L, Yue W, Xie XY, Pei XT . Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun, 2020,11(1):4964. |
[49] | Chattopadhyaya S, Banerjee S. miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes. Biol Cell, 2021,113(2):118-129. |
[50] | Bhatlekar S, Jacob S, Manne BK, Guo L, Denorme F, Tugolukova EA, Cody MJ, Kosaka Y, Rigoutsos I, Campbell RA, Rowley JW, O'Connell RM, Bray PF. Megakaryocyte-specific knockout of the Mir-99b/let7e/ 125a cluster lowers platelet count without altering platelet function. Blood Cells Mol Dis, 2021,92:102624. |
[51] | Chapnik E, Rivkin N, Mildner A, Beck G, Pasvolsky R, Metzl-Raz E, Birger Y, Amir G, Tirosh I, Porat Z, Israel LL, Lellouche E, Michaeli S, Lellouche JPM, Izraeli S, Jung S, Hornstein E. miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis. eLife, 2014,3:e01964. |
[52] | Bhatlekar S, Manne BK, Basak I, Edelstein LC, Tugolukova E, Stoller ML, Cody MJ, Morley SC, Nagalla S, Weyrich AS, Rowley JW, O'Connell RM, Rondina MT, Campbell RA, Bray PF. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood, 2020,136(15):1760-1772. |
[53] | Mammoli F, Parenti S, Lomiento M, Gemelli C, Atene CG, Grande A, Corradini R, Manicardi A, Fantini S, Zanocco- Marani T, Ferrari S . Physiological expression of miR-130a during differentiation of CD34 + human hematopoietic stem cells results in the inhibition of monocyte differentiation . Exp Cell Res, 2019,382(1):111445. |
[54] | Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM, Yao K, Chu FF, Randolph GJ, Rudensky AY, Nussenzweig M . In vivo analysis of dendritic cell development and homeostasis. Science, 2009,324(5925):392-397. |
[55] | Mildner A, Chapnik E, Manor O, Yona S, Kim KW, Aychek T, Varol D, Beck G, Itzhaki ZB, Feldmesser E, Amit I, Hornstein E, Jung S . Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood, 2013,121(6):1016-1027. |
[56] | Teng YZ, Lin XY, Luan CY, Sun YX, Li XL . The high expression of miR-564 in patients with systemic lupus erythematosus promotes differentiation and maturation of DC cells by negatively regulating TP53 expression in vitro. Lupus, 2021,30(9):1469-1480. |
[57] | Li HS, Greeley N, Sugimoto N, Liu YJ, Watowich SS. miR-22 controls Irf8 mRNA abundance and murine dendritic cell development. PLoS One, 2012,7(12):e52341. |
[58] | Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M, Seguín-Estévez Q, Descombes P, Zdobnov EM, Acha-Orbea H, Reith W . Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood, 2011,117(17):4490-4500. |
[59] | Ghani S, Riemke P, Schönheit J, Lenze D, Stumm J, Hoogenkamp M, Lagendijk A, Heinz S, Bonifer C, Bakkers J, Abdelilah-Seyfried S, Hummel M, Rosenbauer F . Macrophage development from HSCs requires PU.1- coordinated microRNA expression. Blood, 2011,118(8):2275-2284. |
[60] | Shen C, Chen MT, Zhang XH, Yin XL, Ning HM, Su R, Lin HS, Song L, Wang F, Ma YN, Zhao HL, Yu J, Zhang JW. . The PU1-modulated microRNA-22 is a regulator of monocyte/macrophage differentiation and acute myeloid leukemia. PLoS Genet, 2016,12(9):e1006259. |
[61] | Velu CS, Baktula AM, Grimes HL . Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood, 2009,113(19):4720-4728. |
[62] | Yu X, Wang QL, Li YF, Wang XD, Xu AL, Li YQ . A novel miR-200b-3p/p38IP pair regulates monocyte/macrophage differentiation. Cell Discov, 2016,2:15043. |
[63] | Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD . Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 2008,451(7182):1125-1129. |
[64] | Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ, Fulkerson PC, Aronow BJ, Rothenberg ME . MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol, 2013,190(4):1576-1582. |
[65] | Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I . A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell, 2005,123(5):819-831. |
[66] | Schneider E, Pochert N, Ruess C, MacPhee L, Escano L, Miller C, Krowiorz K, Delsing Malmberg E, Heravi- Moussavi A, Lorzadeh A, Ashouri A, Grasedieck S, Sperb N, Kumar Kopparapu P, Iben S, Staffas A, Xiang P, Rösler R, Kanduri M, Larsson E, Fogelstrand L, Döhner H, Döhner K, Wiese S, Hirst M, Keith Humphries R, Palmqvist L, Kuchenbauer F, Rouhi A. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia, 2020,34(5):1253-1265. |
[67] | Hartmann JU, Bräuer-Hartmann D, Kardosova M, Wurm AA, Wilke F, Schödel C, Gerloff D, Katzerke C, Krakowsky R, Namasu CY, Bill M, Schwind S, Müller- Tidow C, Niederwieser D, Alberich-Jorda M, Behre G . MicroRNA-143 targets ERK5 in granulopoiesis and predicts outcome of patients with acute myeloid leukemia. Cell Death Dis, 2018,9(8):814. |
[68] | Lu TX, Lim EJ, Itskovich S, Besse JA, Plassard AJ, Mingler MK, Rothenberg JA, Fulkerson PC, Aronow BJ, Rothenberg ME . Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLoS One, 2013,8(3):e59397. |
[69] | Bezman NA, Chakraborty T, Bender T, Lanier LL. miR-150 regulates the development of NK and iNKT cells. J Exp Med, 2011,208(13):2717-2731. |
[70] | Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T . Maturation of mouse NK cells is a 4-stage developmental program. Blood, 2009,113(22):5488-5496. |
[71] | Sullivan RP, Leong JW, Schneider SE, Ireland AR, Berrien-Elliott MM, Singh A, Schappe T, Jewell BA, Sexl V, Fehniger TA . MicroRNA-15/16 antagonizes Myb to control NK cell maturation. J Immunol, 2015,195(6):2806-2817. |
[72] | Hutter K, Rülicke T, Drach M, Andersen L, Villunger A, Herzog S . Differential roles of miR-15a/16-1 and miR-497/195 clusters in immune cell development and homeostasis. FEBS J, 2021,288(5):1533-1545. |
[73] | Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004,303(5654):83-86. |
[74] | Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, Kaech SM, Nakayama M, Rinn JL, Flavell RA . The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. Immunity, 2013,38(5):984-997. |
[75] | Xiao CC, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K . MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell, 2016,165(4):1027. |
[76] | Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, Mussolin L, Ruggero K, Bonanno L, Guffanti A, De Bellis G, Gerosa G, Stellin G, D'Agostino DM, Basso G, Bronte V, Indraccolo S, Amadori A, Zanovello P., Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood, 2011,117(26):7053-7062. |
[77] | Kramer NJ, Wang WL, Reyes EY, Kumar B, Chen CC, Ramakrishna C, Cantin EM, Vonderfecht SL, Taganov KD, Chau N, Boldin MP . Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood, 2015,125(24):3720-3730. |
[78] | Mildner A, Chapnik E, Varol D, Aychek T, Lampl N, Rivkin N, Bringmann A, Paul F, Boura-Halfon S, Hayoun YS, Barnett-Itzhaki Z, Amit I, Hornstein E, Jung S . MicroRNA-142 controls thymocyte proliferation. Eur J Immunol, 2017,47(7):1142-1152. |
[79] | Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T . Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell, 2008,132(5):875-886. |
[80] | Han YC, Vidigal JA, Mu P, Yao E, Singh I, González AJ, Concepcion CP, Bonetti C, Ogrodowski P, Carver B, Selleri L, Betel D, Leslie C, Ventura A . An allelic series of miR-17~92-mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat Genet, 2015,47(7):766-775. |
[81] | Hines MJ, Coffre M, Mudianto T, Panduro M, Wigton EJ, Tegla C, Osorio-Vasquez V, Kageyama R, Benhamou D, Perez O, Bajwa S, McManus MT, Ansel KM, Melamed D, Koralov SB. . miR-29 sustains B cell survival and controls terminal differentiation via regulation of PI3K signaling. Cell Rep, 2020,33(9):108436. |
[82] | Blume J, Ziętara N, Witzlau K, Liu YS, Sanchez OO, Puchałka J, Winter SJ, Kunze-Schumacher H, Saran N, Düber S, Roy B, Weiss S, Klein C, Wurst W, Łyszkiewicz M, Krueger A. miR-191 modulates B-cell development and targets transcription factors E2A, Foxp1, and Egr1. Eur J Immunol, 2019,49(1):121-132. |
[83] | Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC . MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep, 2021,36(2):109390. |
[84] | Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EFE, Baert MRM, van der Spek P, Koster EEL, Reinders MJT, van Dongen JJM, Langerak AW, Staal FJT. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med, 2005,201(11):1715-1723. |
[85] | Lykken EA, Li QJ . The MicroRNA miR-191 supports T cell survival following common γ chain signaling. J Biol Chem, 2016,291(45):23532-23544. |
[86] | Chirichella M, Bianchi N, Džafo E, Foli E, Gualdrini F, Kenyon A, Natoli G, Monticelli S . RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biol, 2022,20(2):e3001538. |
[87] | Geng XJ, Mao GH, Zhao DM, Xiang YG, Wang M, Yu G, Tan L . Downregulation of miR-33a/b and miR-181a contributes to recurrent pregnancy loss by upregulating S1PR1 and repressing regulatory T cell differentiation. Placenta, 2022,121:137-144. |
[88] | Neilson JR, Zheng GXY, Burge CB, Sharp PA . Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev, 2007,21(5):578-589. |
[89] | Fragoso R, Mao T, Wang S, Schaffert S, Gong X, Yue SB, Luong R, Min H, Yashiro-Ohtani Y, Davis M, Pear W, Chen CZ . Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet, 2012,8(8):e1002855. |
[90] | Chan JL, Hu XX, Wang CC, Xu QH. miRNA-152 targets GATA1 to regulate erythropoiesis in Chionodraco hamatus. Biochem Biophys Res Commun, 2018,501(3):711-717. |
[91] | Hu XX, Wang CC, Chan JL, Xu QH. Erythropoiesis study of miR-7132 in antartctic icefish Chionodraco hamatus. In: Proceedings of the 2017 Chinese Fisheries Society Annual Conference abstract Collection. 2017,31. |
胡星星, 王丛丛, 产久林, 许强华 . 南极独角雪冰鱼(Chionodraco hamatus)miR-7132对红细胞发生的作用研究. 2017年中国水产学会学术年会论文摘要集, 2017,31. | |
[92] | Xu QH, Zhang C, Zhang DS, Jiang HP, Peng SH, Liu Y, Zhao K, Wang CC, Chen LB . Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments. BMC Evol Biol, 2016,16:11. |
[93] | Pei TY, Yan SS, Xu QH . Effect of zebrafish miR-15a on erythropoiesis production. Genomics Appl Biol, 2020,39(11):4928-4933. |
裴田瑛, 颜帅帅, 许强华 . 斑马鱼miR-15a对红细胞发生的作用研究. 基因组学与应用生物学, 2020,39(11):4928-4933. | |
[94] | Pei TY, Chen Q, Xu QH . Study on the mechanism of miR-15a on erythrogenesis in Schizoplast fish. Proceedings of the 2018 Chinese Fisheries Association Annual Conference abstract Collection, 2018,84. |
裴田瑛, 陈祺, 许强华 . 裂腹鱼miR-15a对红细胞发生的作用机制研究. 2018年中国水产学会学术年会论文摘要集, 2018,84. | |
[95] | Pei TY, Yan SS, Xu QH . Study on the mechanism of miR-30e on hemocytogenesis in zebrafish. J Dalian Ocean Univ, 2021,36(2):229-233. |
裴田瑛, 颜帅帅, 许强华 . 斑马鱼miR-30e对血细胞生成的作用机制研究. 大连海洋大学学报, 2021,36(2):229-233. |
[1] | 慕蓉蓉, 牛晴晴, 孙玉强, 梅俊, 苗蒙. 陆地棉MYB类转录因子基因GhTT2克隆及功能初步分析[J]. 遗传, 2022, 44(8): 720-728. |
[2] | 唐湘薇, 楚丹, 颜赛娜, 尹艳飞, 卞桥, 翁波, 陈斌, 冉茂良. miR-191靶向BDNF基因通过激活PI3K/AKT信号通路促进猪未成熟支持细胞增殖[J]. 遗传, 2021, 43(7): 680-693. |
[3] | 张春霞, 刘峰. 造血干细胞发育过程中的信号通路调控[J]. 遗传, 2021, 43(4): 295-307. |
[4] | 吕孟冈, 刘艾嘉, 李庆伟, 苏鹏. RHR转录因子家族起源、功能以及进化机制的研究进展[J]. 遗传, 2021, 43(3): 215-225. |
[5] | 邱晓芬, 汤冬娥, 虞海燕, 廖秋燕, 胡芷洋, 周俊, 赵鑫, 何慧燕, 梁灼健, 许承明, 杨明, 戴勇. 基于单细胞ATAC测序技术对18-三体综合征染色质开放性区域转录因子的分析[J]. 遗传, 2021, 43(1): 74-83. |
[6] | 妥晓梅, 朱东丽, 陈晓峰, 荣誉, 郭燕, 杨铁林. 骨质疏松易感SNP rs4325274通过增强子远程调控SOX6基因的功能机制研究[J]. 遗传, 2020, 42(9): 889-897. |
[7] | 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[8] | 王涛涛, 杨勇, 魏唯, 林辰涛, 马留银. 互花米草NAC转录因子家族的鉴定与表达分析[J]. 遗传, 2020, 42(2): 194-211. |
[9] | 杜倍倍, 刘磊, 朱洋洋. RNA结合蛋白Roquin负调控STING依赖的果蝇天然免疫反应[J]. 遗传, 2020, 42(12): 1201-1210. |
[10] | 赵净颖, 段小花, 王秋婷, 黄英, 贾俊静, 豆腾飞. 动物骨代谢相关信号通路研究进展[J]. 遗传, 2020, 42(10): 979-992. |
[11] | 尹玲倩,冉金山,李菁菁,任鹏,张贤娴,刘益平. 禽类就巢性状的遗传调控[J]. 遗传, 2019, 41(5): 391-403. |
[12] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[13] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[14] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[15] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: