[1] | Wang KC, Chang HY . Epigenomics: technologies and applications . Circ Res, 2018,122(9):1191-1199. | [2] | Rivera CM, Ren B . Mapping human epigenomes . Cell, 2013,155(1):39-55. | [3] | Xu Q, Xie W . Epigenome in early mammalian developpment: inheritance, reprogramming and establishment . Trends Cell Biol, 2018,28(3):237-253. | [4] | Dean W, Lucifero D, Santos F . DNA methylation in mammalian development and disease . Birth Defects Res C Embryo Today, 2005,75(2):98-111. | [5] | Marcho C, Cui W, Mager J . Epigenetic dynamics during preimplantation development . Reproduction, 2015,150(3):R109-120. | [6] | Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR . Human DNA methylomes at base resolution show widespread epigenomic differences . Nature, 2009,462(7271):315-322. | [7] | Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR . Global epigenomic reconfiguration during mammalian brain development . Science, 2013,341(6146):1237905. | [8] | Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B . Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome . Cell, 2012,148(4):816-831. | [9] | Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state . Nat Biotechnol, 2015,33(11):1165-1172. | [10] | Brind'amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC . An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations . Nat Commun, 2015,6:6033. | [11] | Shankaranarayanan P, Mendoza-Parra MA, Walia M, Wang L, Li N, Trindade LM, Gronemeyer H . Single-tube linear DNA amplification (LinDA) for robust ChIP-seq . Nat Methods, 2011,8(7):565-567. | [12] | Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, Friedman N, Amit I . Immunogenetics chromatin state dynamics during blood formation . Science, 2014,345(6199):943-949. | [13] | Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation . Nature, 2015,523(7561):486-490. | [14] | Buenrostro JD, Wu B, Chang HY , Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol |
[1] |
Mengxuan Xu, Ming Zhou.
Advances of RNA polymerase IV in controlling DNA methylation and development in plants
[J]. Hereditas(Beijing), 2022, 44(7): 567-580.
|
[2] |
Hongbo Luo, Pengbo Cao, Gangqiao Zhou.
Prognostic and predictive value of a DNA methylation-driven transcriptional signature in hepatocellular carcinoma
[J]. Hereditas(Beijing), 2020, 42(8): 775-787.
|
[3] |
Min Chen, Zheng Zhang, Ziyuan Meng, Xuejun Zhang.
ATAC-seq and its applications in complex disease
[J]. Hereditas(Beijing), 2020, 42(4): 347-353.
|
[4] |
QIN Zu-Xing, HUANG Gao-Bo, LUO Jun, NING Shu-Fang, LU Sheng-Sheng, LU Ke-Huan.
Effect of TSA and VPA treatment on long-tailed macaque (Macaca fascicularis)-pig interspecies somatic cell nuclear transfer
[J]. HEREDITAS, 2012, 34(3): 342-347.
|
[5] |
KONG Qiang-Ran, SHU Jiang, HUANG Bei, HUAN Yan-Jun, WANG Feng, DAN Yong-Gan, LIU Zhong-Feng, WU Mei-Ling, LIU Zhong-Hua.
TSA improve transgenic porcine cloned embryo development and transgene expression
[J]. HEREDITAS, 2011, 33(7): 749-756.
|
[6] |
DU Wei-Hua, ZHU Hua-Bin, HAO Hai-Sheng, WANG Dong.
Somatic cell nuclear transfer and centrosome inheritance
[J]. HEREDITAS, 2008, 30(8): 1513-966.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|