Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (7): 560-569.doi: 10.16288/j.yczz.24-096
• Technique and Method • Previous Articles Next Articles
Yulong Hu1(), Fang Yang1, Yantong Chen1, Shuokai Shen1, Yubo Yan1, Yuebo Zhang1, Xiaolin Wu2,3, Jiaming Wang4, Jun He1(
), Ning Gao1(
)
Received:
2024-04-08
Revised:
2024-05-24
Online:
2024-07-20
Published:
2024-06-03
Supported by:
Yulong Hu, Fang Yang, Yantong Chen, Shuokai Shen, Yubo Yan, Yuebo Zhang, Xiaolin Wu, Jiaming Wang, Jun He, Ning Gao. Integrating mRNA transcripts and genomic information into genomic prediction[J]. Hereditas(Beijing), 2024, 46(7): 560-569.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Basic description of genomic prediction models"
模型 | 表达式 | 遗传效应 |
---|---|---|
GBLUP | ||
GmBLUP | ||
GHBLUP|T | ||
CHM|T | ||
CHE|T | ||
GmBLUP* | ||
GHBLUP|T* | ||
CHM|T* | ||
CHE|T* |
Table 2
Descriptive statistics of mRNA transcripts derived predictive variables in the DGPR2 Drosophila population"
项目 | 最小值 | 最大值 | 中位数 | 平均数 | 标准差 |
---|---|---|---|---|---|
外显子数量 | 1 | 140 | 32 | 104 | 6.82 |
CDS数量 | 1 | 116 | 3 | 4.55 | 4.57 |
转录本数量 | 1 | 75 | 2 | 2.23 | 2.31 |
转录本SNP数量 | 1 | 995 | 18 | 30.45 | 47.61 |
转录本等位基因数量 (质控前) | 2 | 195 | 37 | 49.74 | 42.83 |
转录本等位基因数量 (质控后) | 2 | 30 | 14 | 13.30 | 6.22 |
转录本基因型数量 (质控前) | 2 | 183 | 37 | 49.63 | 42.45 |
转录本基因型数量 (质控后) | 2 | 32 | 14 | 13.46 | 6.29 |
Table 3
Predictive ability of the studied models for traits in the Drosophila data"
性状 | GBLUP | GmBLUP | GmBLUP* | GHBLUP|T | GHBLUP|T* | CHM|T | CHM|T* | CHE|T | CHE|T* |
---|---|---|---|---|---|---|---|---|---|
startle(F) | 0.347±0.009 | 0.361±0.009 | 0.358±0.010 | 0.355±0.009 | 0.341±0.009 | 0.364±0.009 | 0.357±0.009 | 0.321±0.009 | 0.343±0.009 |
startle(M) | 0.315±0.010 | 0.329±0.010 | 0.327±0.010 | 0.324±0.010 | 0.314±0.010 | 0.321±0.010 | 0.313±0.009 | 0.284±0.010 | 0.310±0.010 |
starvation(F) | 0.344±0.008 | 0.329±0.008 | 0.334±0.008 | 0.324±0.008 | 0.338±0.007 | 0.325±0.008 | 0.341±0.008 | 0.282±0.008 | 0.344±0.008 |
starvation(M) | 0.362±0.007 | 0.346±0.007 | 0.351±0.007 | 0.361±0.006 | 0.353±0.006 | 0.350±0.007 | 0.360±0.007 | 0.299±0.007 | 0.362±0.007 |
1hexanol(F) | 0.147±0.009 | 0.152±0.010 | 0.136±0.010 | 0.194±0.010 | 0.189±0.010 | 0.210±0.010 | 0.208±0.010 | 0.206±0.009 | 0.199±0.010 |
1hexanol(M) | 0.198±0.010 | 0.181±0.010 | 0.190±0.010 | 0.203±0.009 | 0.192±0.009 | 0.202±0.009 | 0.189±0.010 | 0.205±0.009 | 0.197±0.009 |
2heptanone(F) | 0.284±0.007 | 0.270±0.007 | 0.277±0.007 | 0.261±0.007 | 0.284±0.007 | 0.228±0.007 | 0.285±0.007 | 0.247±0.006 | 0.284±0.007 |
2heptanone(M) | 0.137±0.009 | 0.140±0.010 | 0.126±0.008 | 0.131±0.009 | 0.125±0.009 | 0.106±0.009 | 0.132±0.009 | 0.134±0.010 | 0.124±0.010 |
2phenylEthylAlcohol(F) | 0.332±0.005 | 0.327±0.005 | 0.317±0.005 | 0.328±0.005 | 0.324±0.005 | 0.333±0.005 | 0.325±0.005 | 0.301±0.006 | 0.330±0.004 |
2phenylEthylAlcohol(M) | 0.143±0.008 | 0.140±0.008 | 0.126±0.008 | 0.132±0.009 | 0.128±0.009 | 0.123±0.009 | 0.133±0.010 | 0.114±0.010 | 0.128±0.010 |
benz(F) | 0.291±0.011 | 0.302±0.010 | 0.298±0.010 | 0.280±0.010 | 0.280±0.010 | 0.299±0.010 | 0.285±0.010 | 0.266±0.011 | 0.288±0.011 |
benz(M) | 0.198±0.014 | 0.210±0.013 | 0.205±0.013 | 0.182±0.015 | 0.192±0.015 | 0.205±0.014 | 0.192±0.014 | 0.161±0.017 | 0.195±0.015 |
benzaldehyde(F) | 0.392±0.007 | 0.399±0.008 | 0.399±0.008 | 0.361±0.008 | 0.387±0.007 | 0.370±0.007 | 0.386±0.007 | 0.338±0.007 | 0.389±0.007 |
benzaldehyde(M) | 0.307±0.008 | 0.318±0.007 | 0.313±0.007 | 0.288±0.008 | 0.299±0.008 | 0.293±0.007 | 0.300±0.008 | 0.251±0.006 | 0.303±0.008 |
cafe(F) | 0.255±0.010 | 0.259±0.010 | 0.248±0.011 | 0.261±0.011 | 0.247±0.011 | 0.253±0.010 | 0.240±0.011 | 0.256±0.009 | 0.249±0.010 |
cafe(M) | 0.355±0.007 | 0.372±0.007 | 0.370±0.007 | 0.401±0.007 | 0.400±0.007 | 0.401±0.007 | 0.401±0.007 | 0.378±0.006 | 0.349±0.008 |
dCarvone(F) | 0.211±0.012 | 0.221±0.011 | 0.209±0.011 | 0.222±0.012 | 0.212±0.013 | 0.228±0.012 | 0.217±0.013 | 0.232±0.011 | 0.211±0.013 |
dCarvone(M) | 0.256±0.011 | 0.241±0.011 | 0.238±0.011 | 0.274±0.011 | 0.268±0.011 | 0.256±0.011 | 0.241±0.011 | 0.242±0.011 | 0.252±0.010 |
ethylAcetate(F) | 0.435±0.007 | 0.433±0.006 | 0.427±0.007 | 0.403±0.008 | 0.433±0.007 | 0.401±0.007 | 0.426±0.008 | 0.400±0.007 | 0.434±0.007 |
ethylAcetate(M) | 0.336±0.014 | 0.338±0.014 | 0.329±0.014 | 0.311±0.015 | 0.327±0.014 | 0.314±0.014 | 0.328±0.014 | 0.279±0.015 | 0.334±0.014 |
ethylButyrate(F) | 0.383±0.007 | 0.383±0.008 | 0.373±0.008 | 0.347±0.008 | 0.382±0.007 | 0.356±0.008 | 0.381±0.007 | 0.336±0.008 | 0.382±0.007 |
ethylButyrate(M) | 0.463±0.007 | 0.468±0.007 | 0.456±0.007 | 0.432±0.008 | 0.460±0.007 | 0.422±0.008 | 0.460±0.007 | 0.391±0.008 | 0.460±0.007 |
etoh_e1(F) | 0.185±0.007 | 0.177±0.008 | 0.168±0.008 | 0.158±0.008 | 0.178±0.008 | 0.174±0.009 | 0.167±0.008 | 0.179±0.009 | 0.172±0.008 |
etoh_e1(M) | 0.068±0.009 | 0.060±0.010 | 0.063±0.009 | 0.033±0.010 | 0.062±0.009 | 0.059±0.011 | 0.051±0.010 | 0.041±0.009 | 0.059±0.009 |
etoh_e2(F) | 0.197±0.010 | 0.189±0.009 | 0.183±0.010 | 0.160±0.010 | 0.189±0.010 | 0.179±0.009 | 0.177±0.010 | 0.171±0.011 | 0.175±0.012 |
etoh_e2(M) | 0.058±0.010 | 0.047±0.010 | 0.047±0.010 | 0.059±0.009 | 0.048±0.009 | 0.070±0.009 | 0.052±0.009 | 0.063±0.008 | 0.053±0.008 |
eugenol(F) | 0.235±0.012 | 0.244±0.012 | 0.233±0.013 | 0.201±0.014 | 0.217±0.012 | 0.180±0.013 | 0.228±0.013 | 0.191±0.015 | 0.228±0.012 |
eugenol(M) | 0.176±0.009 | 0.205±0.009 | 0.200±0.008 | 0.151±0.010 | 0.153±0.010 | 0.144±0.009 | 0.165±0.010 | 0.107±0.012 | 0.169±0.009 |
helional(F) | 0.136±0.014 | 0.146±0.015 | 0.135±0.015 | 0.100±0.015 | 0.111±0.014 | 0.085±0.015 | 0.125±0.014 | 0.106±0.013 | 0.112±0.013 |
helional(M) | 0.101±0.012 | 0.062±0.013 | 0.092±0.013 | 0.056±0.014 | 0.088±0.013 | 0.031±0.014 | 0.092±0.012 | 0.061±0.014 | 0.091±0.012 |
hexanal(F) | 0.310±0.008 | 0.303±0.007 | 0.301±0.008 | 0.310±0.008 | 0.303±0.008 | 0.298±0.008 | 0.306±0.008 | 0.274±0.008 | 0.306±0.008 |
hexanal(M) | 0.209±0.007 | 0.214±0.007 | 0.198±0.007 | 0.224±0.009 | 0.209±0.007 | 0.215±0.009 | 0.200±0.007 | 0.200±0.009 | 0.202±0.008 |
lCarvone(F) | 0.279±0.010 | 0.276±0.010 | 0.268±0.010 | 0.274±0.010 | 0.265±0.010 | 0.293±0.010 | 0.274±0.010 | 0.276±0.011 | 0.277±0.010 |
lCarvone(M) | 0.341±0.007 | 0.284±0.007 | 0.350±0.007 | 0.312±0.007 | 0.349±0.007 | 0.312±0.006 | 0.350±0.007 | 0.296±0.008 | 0.349±0.007 |
methylSalicylate(F) | 0.365±0.009 | 0.377±0.009 | 0.369±0.009 | 0.364±0.008 | 0.351±0.009 | 0.353±0.008 | 0.350±0.009 | 0.336±0.008 | 0.358±0.009 |
methylSalicylate(M) | 0.337±0.007 | 0.336±0.008 | 0.320±0.007 | 0.308±0.008 | 0.335±0.007 | 0.293±0.009 | 0.336±0.007 | 0.276±0.008 | 0.336±0.007 |
startle_msb_sensitivity(F) | 0.056±0.010 | 0.064±0.011 | 0.057±0.010 | 0.093±0.011 | 0.089±0.011 | 0.088±0.010 | 0.082±0.010 | 0.097±0.011 | 0.092±0.011 |
startle_msb_sensitivity(M) | 0.006±0.014 | 0.015±0.013 | 0.006±0.014 | 0.082±0.014 | 0.070±0.013 | 0.082±0.014 | 0.071±0.013 | 0.078±0.015 | 0.066±0.014 |
survival_paraquat(F) | 0.285±0.007 | 0.264±0.008 | 0.274±0.007 | 0.252±0.008 | 0.284±0.006 | 0.265±0.008 | 0.276±0.007 | 0.237±0.008 | 0.286±0.006 |
survival_paraquat(M) | 0.101±0.009 | 0.108±0.009 | 0.087±0.009 | 0.115±0.011 | 0.106±0.010 | 0.138±0.010 | 0.129±0.010 | 0.091±0.012 | 0.084±0.010 |
[1] |
Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.
doi: 10.1093/genetics/157.4.1819 pmid: 11290733 |
[2] |
Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975, 31(2): 423-447.
pmid: 1174616 |
[3] |
Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci, 2009, 92(2): 433-443.
doi: 10.3168/jds.2008-1646 pmid: 19164653 |
[4] |
Zhao YX, Hou Y, Xu YY, Luan Y, Zhou HH, Qi XL, Hu MY, Wang DY, Wang ZX, Fu YH, Li JJ, Zhang SX, Chen JH, Han JL, Li XY, Zhao SH. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat Commun, 2021, 12(1): 2217.
doi: 10.1038/s41467-021-22448-x pmid: 33850120 |
[5] | Tang ZS, Yin D, Yin LL, Ma YL, Xiang T, Zhu MJ, Yu M, Liu XL, Li XY, Qiu XT, Zhao SH. To evaluate the “two-step” genomic selection strategy in pig by simulation. Sci Agric Sin, 2021, 54(21): 4677-4686. |
唐振双, 殷东, 尹立林, 马云龙, 项韬, 朱猛进, 余梅, 刘小磊, 李新云, 邱小田, 赵书红. 猪基因组选择“两步走”策略的计算机模拟评估. 中国农业科学, 2021, 54(21): 4677-4686.
doi: 10.3864/j.issn.0578-1752.2021.21.016 |
|
[6] |
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci, 2008, 91(11): 4414-4423.
doi: 10.3168/jds.2007-0980 pmid: 18946147 |
[7] |
Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci, 2009, 92(9): 4656-4663.
doi: 10.3168/jds.2009-2061 pmid: 19700729 |
[8] | Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. Genet Sel Evol, 2010, 42(1): 2. |
[9] | Ye SP, Gao N, Zheng RR, Chen ZT, Teng JY, Yuan XL, Zhang H, Chen ZM, Zhang XQ, Li JQ, Zhang Z. Strategies for obtaining and pruning imputed whole- genome sequence data for genomic prediction. Front Genet, 2019, 10: 673. |
[10] |
Al Kalaldeh M, Gibson J, Duijvesteijn N, Daetwyler HD, MacLeod I, Moghaddar N, Lee SH, van der Werf JHJ. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genet Sel Evol, 2019, 51(1): 32.
doi: 10.1186/s12711-019-0476-4 pmid: 31242855 |
[11] |
Song HL, Ye SP, Jiang YF, Zhang Z, Zhang Q, Ding XD. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs. Genet Sel Evol, 2019, 51(1): 58.
doi: 10.1186/s12711-019-0500-8 pmid: 31638889 |
[12] | Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He JL, Li JQ, Simianer H. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS One, 2014, 9(3): e93017. |
[13] |
Gao N, Martini JWR, Zhang Z, Yuan XL, Zhang H, Simianer H, Li JQ. Incorporating gene annotation into genomic prediction of complex phenotypes. Genetics, 2017, 207(2): 489-501.
doi: 10.1534/genetics.117.300198 pmid: 28839043 |
[14] |
Gao N, Teng JY, Ye SP, Yuan XL, Huang SW, Zhang H, Zhang XQ, Li JQ, Zhang Z. Genomic prediction of complex phenotypes using genic similarity based relatedness matrix. Front Genet, 2018, 9: 364.
doi: 10.3389/fgene.2018.00364 pmid: 30233646 |
[15] |
Edwards SM, Sørensen IF, Sarup P, Mackay TFC, Sørensen P. Genomic prediction for quantitative traits is improved by mapping variants to gene ontology categories in Drosophila melanogaster. Genetics, 2016, 203(4): 1871-1883.
doi: 10.1534/genetics.116.187161 pmid: 27235308 |
[16] | Christensen OF, Börner V, Varona L, Legarra A. Genetic evaluation including intermediate omics features. Genetics, 2021, 219(2): iyab130. |
[17] | Hu ZL, Park CA, Reecy JM. Developmental progress and current status of the animal QTLdb. Nucleic Acids Res, 2016, 44(D1): D827-D833. |
[18] | Zhang Z, Erbe M, He JL, Ober U, Gao N, Zhang H, Simianer H, Li JQ. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix. G3 (Bethesda), 2015, 5(4): 615-627. |
[19] | de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet, 2013, 9(7): e1003608. |
[20] | Ramstein GP, Evans J, Kaeppler SM, Mitchell RB, Vogel KP, Buell CR, Casler MD. Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium. G3 (Bethesda), 2016, 6(4): 1049-1062. |
[21] | Huang W, Richards S, Carbone MA, Zhu DH, Anholt RRH, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu YQ, Zhang YQ, Zou XY, Stone EA, Gibbs RA, Mackay TFC. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Nat Acad Sci USA, 2012, 109(39): 15553-15559. |
[22] | Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu DH, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RRH, Barrón M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M, Muzny DM, Nazareth L, Newsham I, Perales L, Pu LL, Qu C, Ràmia M, Reid JG, Rollmann SM, Rozas J, Saada N, Turlapati L, Worley KC, Wu YQ, Yamamoto A, Zhu YM, Bergman CM, Thornton KR, Mittelman D, Gibbs RA. The Drosophila melanogaster genetic reference panel. Nature, 2012, 482(7384): 173-178. |
[23] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[24] |
Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet, 2018, 103(3): 338-348.
doi: S0002-9297(18)30242-8 pmid: 30100085 |
[25] |
Browning BL, Tian XW, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet, 2021, 108(10): 1880-1890.
doi: 10.1016/j.ajhg.2021.08.005 pmid: 34478634 |
[26] |
Martini JWR, Wimmer V, Erbe M, Simianer H. Epistasis and covariance: how gene interaction translates into genomic relationship. Theor Appl Genet, 2016, 129(5): 963-976.
doi: 10.1007/s00122-016-2675-5 pmid: 26883048 |
[27] |
Li ZC, Gao N, Martini JWR, Simianer H. Integrating gene expression data into genomic prediction. Front Genet, 2019, 10: 126.
doi: 10.3389/fgene.2019.00126 pmid: 30858865 |
[28] |
Hickey JM, Kinghorn BP, Tier B, Clark SA, van der Werf JHJ, Gorjanc G. Genomic evaluations using similarity between haplotypes. J Anim Breed Genet, 2013, 130(4): 259-269.
doi: 10.1111/jbg.12020 pmid: 23855628 |
[29] |
Dong C, Wang SJ, Zhao ZJ, Ji X, Shen Q, Yu Y, Cui SD, Wang JG, Chen ZY, Wang JY, Guo ZY, Wu PX, Tang GQ. Genomic prediction of pig growth traits based on machine learning. Hereditas(Beijing), 2023, 45(10): 922-932.
doi: 10.16288/j.yczz.23-120 pmid: 37872114 |
陈栋, 王书杰, 赵真坚, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 王金勇, 郭宗义, 吴平先, 唐国庆. 基于机器学习的猪生长性状基因组预测. 遗传, 2023, 45(10): 922-932. | |
[30] | Azodi CB, Pardo J, VanBuren R, de Los Campos G, Shiu SH. Transcriptome-based prediction of complex traits in maize. Plant Cell, 2020, 32(1): 139-151. |
[1] | Anqi Yang, Bin Chen, Maoliang Ran, Guangmin Yang, Cheng Zeng. The application of genomic selection in pig cross breeding [J]. Hereditas(Beijing), 2020, 42(2): 145-152. |
[2] | Jun He,Fernando B. Lopes,Xiao-Lin Wu. Methods and applications of animal genomic mating [J]. Hereditas(Beijing), 2019, 41(6): 486-493. |
[3] | Zhida Zhao,Li Zhang. Applications of genome selection in sheep breeding [J]. Hereditas(Beijing), 2019, 41(4): 293-303. |
[4] | Jun He,Changsong Qian,Richard G. Tait Jr.,Stewart Bauck,Xiaolin Wu. Estimating genomic breed composition of individual animals using selected SNPs [J]. Hereditas(Beijing), 2018, 40(4): 305-314. |
[5] | Hongwei Li,Ruijun Wang,Zhiying Wang,Xuewu Li,Zhenyu Wang,Yanjun Zhang,Rui Su,Zhihong Liu,Jinquan Li. The research progress of genomic selection in livestock [J]. Hereditas(Beijing), 2017, 39(5): 377-387. |
[6] | Chonglong Wang, Xiangdong Ding, Jianfeng Liu, Zongjun Yin, Qin Zhang. Bayesian methods for genomic breeding value estimation [J]. HEREDITAS, 2014, 36(2): 111-118. |
[7] | LI Heng-De, BAO Zhen-Min, SUN Xiao-Wen. Genomic selection and its application [J]. HEREDITAS, 2011, 33(12): 1308-1316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号