Hereditas(Beijing) ›› 2021, Vol. 43 ›› Issue (1): 66-73.doi: 10.16288/j.yczz.20-245
• Review • Previous Articles Next Articles
Guofang Liu1, Xinxin Wang2, Huizhao Su2, Guangtao Lu2()
Received:
2020-09-18
Revised:
2020-12-07
Online:
2021-01-20
Published:
2020-12-10
Contact:
Lu Guangtao
E-mail:lugt@gxu.edu.cn
Supported by:
Guofang Liu, Xinxin Wang, Huizhao Su, Guangtao Lu. Progress on the GntR family transcription regulators in bacteria[J]. Hereditas(Beijing), 2021, 43(1): 66-73.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Majidian P, Kuse J, Tanaka K, Najafi H, Zeinalabedini M, Takenaka S, Yoshida KI . Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. J Gen Appl Microbiol, 2017,62(6):277-285.
doi: 10.2323/jgam.2016.05.004 pmid: 27829583 |
[2] |
Pabo CO, Sauer RT . Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem, 1992,61:1053-1095.
doi: 10.1146/annurev.bi.61.070192.005201 pmid: 1497306 |
[3] |
Haydon DJ, Guest JR . A new family of bacterial regulatory proteins. FEMS Microbiol Lett, 1991,63(2-3):291-295.
doi: 10.1016/0378-1097(91)90101-f pmid: 2060763 |
[4] |
Fujita Y, Fujita R . New diagnostic systems--technics, efficiency and limitations. Cholangioscopy. a) Peroral cholangioscopy. Nihon Rinsho, 1987,45(7):1466-1471.
pmid: 3669339 |
[5] |
Hoskisson PA, Rigali S . Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol, 2009,69:1-22.
doi: 10.1016/S0065-2164(09)69001-8 pmid: 19729089 |
[6] |
Suvorova IA, Korostelev YD, Gelfand MS . GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One, 2015,10(7):e0132618.
doi: 10.1371/journal.pone.0132618 pmid: 26151451 |
[7] |
Vindal V, Suma K, Ranjan A . GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC Genomics, 2007,8:289.
doi: 10.1186/1471-2164-8-289 pmid: 17714599 |
[8] |
Zheng MY, Cooper DR, Grossoehme NE, Yu MM, Hung LW, Cieslik M, Derewenda U, Lesley SA, Wilson IA, Giedroc DP, Derewenda ZS . Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn 2+-binding FCD domains. Acta Crystallogr D Biol Crystallogr , 2009,65(Pt 4):356-365.
doi: 10.1107/S0907444909004727 pmid: 19307717 |
[9] |
van Aalten DM, DiRusso CC, Knudsen J, Wierenga RK . Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J, 2000,19(19):5167-5177.
doi: 10.1093/emboj/19.19.5167 pmid: 11013219 |
[10] |
Rigali S, Derouaux A, Giannotta F, Dusart J . Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem, 2002,277(15):12507-12515.
doi: 10.1074/jbc.M110968200 pmid: 11756427 |
[11] |
Allison SL, Phillips AT . Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J Bacteriol, 1990,172(9):5470-5476.
doi: 10.1128/jb.172.9.5470-5476.1990 pmid: 2203753 |
[12] |
Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA . Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLoS One, 2016,11(6):e0157691.
doi: 10.1371/journal.pone.0157691 pmid: 27337024 |
[13] |
Milano T, Angelaccio S, Tramonti A, Di Salvo ML, Contestabile R, Pascarella S . Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators. Biochim Open, 2016,3:8-18.
doi: 10.1016/j.biopen.2016.07.002 pmid: 29450126 |
[14] |
Gao YG, Yao M, Itou H, Zhou Y, Tanaka I . The structures of transcription factor CGL2947 from Corynebacterium glutamicum in two crystal forms: A novel homodimer assembling and the implication for effector-binding mode. Protein Sci, 2007,16(9):1878-1886.
doi: 10.1110/ps.072976907 pmid: 17766384 |
[15] |
Yoshida KI, Fujita Y, Ehrlich SD . An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. J Bacteriol, 2000,182(19):5454-5461.
doi: 10.1128/jb.182.19.5454-5461.2000 pmid: 10986249 |
[16] |
Gu D, Meng HM, Li Y, Ge HJ, Jiao XN . A GntR family transcription factor (VPA1701) for swarming motility and colonization of Vibrio parahaemolyticus. Pathogens, 2019,8(4):235.
doi: 10.3390/pathogens8040235 |
[17] |
Hoskisson PA, Rigali S, Fowler K, Findlay KC, Buttner MJ . DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol, 2006,188(14):5014-5023.
doi: 10.1128/JB.00307-06 pmid: 16816174 |
[18] |
Daddaoua A, Corral-Lugo A, Ramos JL, Krell T . Identification of GntR as regulator of the glucose metabolism in Pseudomonas aeruginosa. Environ Microbiol, 2017,19(9):3721-3733.
doi: 10.1111/1462-2920.13871 pmid: 28752954 |
[19] |
Truong-Bolduc QC, Hooper DC . The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and beta-lactams in Staphylococcus aureus. J Bacteriol, 2007,189(8):2996-3005.
doi: 10.1128/JB.01819-06 pmid: 17277059 |
[20] |
Li ZQ, Wang SL, Zhang H, Zhang JL, Xi L, Zhang JB, Chen CF . Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages. World J Microbiol Biotechnol, 2017,33(3):60.
doi: 10.1007/s11274-017-2230-9 pmid: 28243986 |
[21] |
Zhou XF, Yan Q, Wang N . Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. Mol Plant Pathol, 2017,18(2):249-262.
doi: 10.1111/mpp.12397 pmid: 26972728 |
[22] |
Zhou Y, Nie RN, Liu XY, Kong JH, Wang XH, Li JQ . GntR is involved in the expression of virulence in strain Streptococcus suis P1/7. FEMS Microbiol Lett, 2018,365(14).
doi: 10.1093/femsle/fny052 pmid: 29514248 |
[23] |
Gao RS, Li DF, Lin Y, Lin JX, Xia XY, Wang H, Bi LJ, Zhu J, Hassan B, Wang SH, Feng YJ . Structural and functional characterization of the FadR regulatory protein from Vibrio alginolyticus. Front Cell Infect Microbiol, 2017,7:513.
doi: 10.3389/fcimb.2017.00513 pmid: 29312893 |
[24] |
Huang WL, Wilks A . A rapid seamless method for gene knockout in Pseudomonas aeruginosa. BMC Microbiol, 2017,17(1):199.
doi: 10.1186/s12866-017-1112-5 pmid: 28927382 |
[25] |
Wang TT, Qi YH, Wang ZH, Zhao JR, Ji LX, Li J, Cai Z, Yang L, Wu M, Liang HH . Coordinated regulation of anthranilate metabolism and bacterial virulence by the GntR family regulator MpaR in Pseudomonas aeruginosa. Mol Microbiol, 2020,114(5):857-869.
doi: 10.1111/mmi.14584 pmid: 32748556 |
[26] |
Li ZB, Xiang ZT, Zeng JM, Li YQ, Li JY . A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front Microbiol, 2019,9:3224.
doi: 10.3389/fmicb.2018.03224 pmid: 30692967 |
[27] |
Wu KF, Xu HM, Zheng YQ, Wang LB, Zhang XM, Yin YB . CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep, 2016,6:29255.
doi: 10.1038/srep29255 pmid: 27386955 |
[28] |
Truong-Bolduc QC, Dunman PM, Eidem T, Hooper DC . Transcriptional profiling analysis of the global regulator NorG, a GntR-Like protein of Staphylococcus aureus. J Bacteriol, 2011,193(22):6207-6214.
doi: 10.1128/JB.05847-11 |
[29] |
An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL . Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. Mol Plant Microbe Interact, 2011,24(9):1027-1039.
doi: 10.1094/MPMI-08-10-0180 pmid: 21615202 |
[30] |
Su HZ, Wu L, Qi YH, Liu GF, Lu GT, Tang JL . Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris. Sci Rep, 2016,6:19862.
doi: 10.1038/srep19862 pmid: 26818230 |
[31] |
Liu GF, Su HZ, Sun HY, Lu GT, Tang JL . Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp. Mol Plant Pathol, 2019,20(1):51-68.
doi: 10.1111/mpp.12739 pmid: 30091270 |
[32] |
Zhou XF, Yan Q, Wang N . Deciphering the regulon of a GntR family regulator via transcriptome and ChIP-exo analyses and its contribution to virulence in Xanthomonas citri. Mol Plant Pathol, 2017,18(2):249-262.
doi: 10.1111/mpp.12397 pmid: 26972728 |
[33] |
Chi WJ . Retracted: DasR, a GntR-family global regulator, regulates N-acetylglucosamine metabolism in Streptomyces griseus. J Microbiol Biotechnol, 2017.
doi: 10.4014/jmb.2011.11029 pmid: 33263336 |
[34] |
Taw MN, Lee HI, Lee SH, Chang WS . Characterization of MocR, a GntR-like transcriptional regulator, in Bradyrhizobium japonicum: its impact on motility, biofilm formation, and soybean nodulation. J Microbiol, 2015,53(8):518-525.
doi: 10.1007/s12275-015-5313-z pmid: 26224454 |
[35] |
Browning DF, Busby SJ . The regulation of bacterial transcription initiation. Nat Rev Microbiol, 2004,2(1):57-65.
doi: 10.1038/nrmicro787 pmid: 15035009 |
[1] | Chang Lu, Yinhua Huang. Progress in long non-coding RNAs in animals [J]. Hereditas(Beijing), 2017, 39(11): 1054-1065. |
[2] | Huanping Zhang, Tongming Yin. Advances in lineage-specific genes [J]. HEREDITAS(Beijing), 2015, 37(6): 544-553. |
[3] | Xiaoqing Huang,Dandan Li,Juan Wu. Long non-coding RNAs in plants [J]. HEREDITAS(Beijing), 2015, 37(4): 344-359. |
[4] | Yanli Yu, Yanjiao Li, Kaiyuan Pang, Fajun Zhang, Qi Sun, Wencai Li, Zhaodong Meng. Structure and biological functions of plant FKBP family [J]. HEREDITAS(Beijing), 2014, 36(6): 536-546. |
[5] | WANG Hong LI Gang-Bo ZHANG Da-Yong LIN Jing SHENG Bao-Long CHANG You-Hong. Biological functions of HD-Zip transcription factors [J]. HEREDITAS, 2013, 35(10): 1179-1188. |
[6] | ZHANG Ji-Yu, WANG Qing-Ju, GUO Zhong-Ren. Progresses on plant AP2/ERF transcription factors [J]. HEREDITAS, 2012, 34(7): 835-847. |
[7] | SHI Ya-Li, ZHANG Rui, LIN Qin, GUO San-Dui. Biological function of the Somatic embryogenesis receptor-like kinases in plant [J]. HEREDITAS, 2012, 34(5): 551-559. |
[8] | LUO Jun-Ling ZHAO Na LU Chang-Ming. Plant Trihelix transcription factors family [J]. HEREDITAS, 2012, 34(12): 1551-1560. |
[9] | TANG Qing-Qiu, JIANG Jing-Yan, YANG Chu-Fen, JU Xiao-Ting, DONG Xiao-Yang. Research and development of Lipin family [J]. HEREDITAS, 2010, 32(10): 981-993. |
[10] | FENG Hua, CHEN Chen, WANG Yi-Qin, QIU Jin-Long, CHU Cheng-Cai, DU Xi-Hua. Plant SNAREs and their biological functions [J]. HEREDITAS, 2009, 31(5): 471-478. |
[11] | E Zhi-Guo, Wang Lei. Advance on the cloning and functional analysis of disease resistance genes in rice [J]. HEREDITAS, 2009, 31(10): 999-1005. |
[12] | YU Wen-Bo, JIANG Song-Min, YU Long. Research progresses on septin family [J]. HEREDITAS, 2008, 30(9): 1107-1107. |
[13] | WANG Yan, XU Heng-Yong, ZHU Qing. Progress in the study on mammalian diacylgycerol acyltransgerase (DGAT) gene and its biological function [J]. HEREDITAS, 2007, 29(10): 1167-1167―1172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号