Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (9): 845-855.doi: 10.16288/j.yczz.23-058
• Research Article • Previous Articles
Xiaohua Hao1,2(), Shuang Hu2, Dan Zhao2, Lianfu Tian2, Zijing Xie2, Sha Wu2, Wenli Hu2, Han Lei2, Dongping Li2(
)
Received:
2023-03-15
Revised:
2023-06-14
Online:
2023-09-20
Published:
2023-07-19
Contact:
Dongping Li
E-mail:14771417@qq.com;dli@hunnu.edu.cn
Supported by:
Xiaohua Hao, Shuang Hu, Dan Zhao, Lianfu Tian, Zijing Xie, Sha Wu, Wenli Hu, Han Lei, Dongping Li. OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA[J]. Hereditas(Beijing), 2023, 45(9): 845-855.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Primers used in this study"
引物名称 | 引物序列(5′→3′) | 用途 |
---|---|---|
OsGA3ox1-RT-PCR | F:CGAGACCGAGCGGAAGA | 半定量RT-PCR和实时荧光定量PCR |
R:GCCGACGACGACGATGA | ||
OsGA3ox2-RT-PCR | F:TTCTCCAAGCTCATGTGGTC | 半定量RT-PCR和实时荧光定量PCR |
R:GCATCTCCTTGTGAAACTC | ||
OsActin2-RT-PCR | F:ATGTGCCAGCTATGTATGTC | 半定量RT-PCR和实时荧光定量PCR |
R:CGTTCAGCAGTGGTAGTGA | ||
OsGA3ox1-Cas9-1 | F:GCCGGAGTCGCACGTGTGGA | 构建CRISPR/Cas9基因编辑载体 |
R:TCCACACGTGCGACTCCGGC | ||
OsGA3ox1-Cas9-2 | F:CGATGAGAGCTCTGGGCGAG | 构建CRISPR/Cas9基因编辑载体 |
R:CTCGCCCAGAGCTCTCATCG | ||
OsGA3ox2-Cas9-1 | F:GCTCTGCTTCGACTTCCGGG | 构建CRISPR/Cas9基因编辑载体 |
R:CCCGGAAGTCGAAGCAGAGC | ||
OsGA3ox2-Cas9-2 | F:GAGAAGATGCGCGCCGTCCG | 构建CRISPR/Cas9基因编辑载体 |
R:CGGACGGCGCGCATCTTCTC | ||
OsGA3ox1-GUS | F:GGTTTTCATGCCATGCCAAT | 构建GUS表达载体 |
R:GCATGAACTCGTTGGCTA | ||
OsGA3ox2-GUS | F:ATAGTCCTCGGCAAGAAG | 构建GUS表达载体 |
R:CGACGACGACGACGAT |
[1] |
Gao SP, Chu CC. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61(11): 1902-1911.
doi: 10.1093/pcp/pcaa104 pmid: 32761079 |
[2] |
Jin Y, Song XY, Chang HZ, Zhao YY, Cao CH, Qiu XB, Zhu J, Wang ET, Yang ZN, Yu N. The GA-DELLA- OsMS188 module controls male reproductive development in rice. New Phytol, 2022, 233(6): 2629-2642.
doi: 10.1111/nph.v233.6 |
[3] |
Mo WP, Tang WJ, Du YX, Jing YJ, Bu QY, Lin RC. PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress. Plant Physiol, 2020, 184(1): 506-517.
doi: 10.1104/pp.20.00024 pmid: 32581115 |
[4] |
Li LL, Zhang HH, Yang ZH, Wang C, Li SS, Cao C, Yao TS, Wei ZY, Li YJ, Chen JP, Sun ZT. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice. Nat Commun, 2022, 13(1): 6920.
doi: 10.1038/s41467-022-34649-z pmid: 36376330 |
[5] | Tang JQ, Tian XJ, Mei EY, He ML, Gao JW, Yu J, Xu M, Liu JL, Song L, Li XF, Wang ZY, Guan QJ, Zhao ZG, Wang CM, Bu QY. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. Plant Cell, 2022, 4(11): 4495-4515. |
[6] |
Sun HW, Guo XL, Zhu XL, Gu PY, Zhang W, Tao WQ, Wang DJ, Wu YZ, Zhao QZ, Xu GH, Fu XD, Zhang YL. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Mol Plant, 2023, 16(3): 588-598.
doi: 10.1016/j.molp.2023.01.009 |
[7] |
Eriksson S, Böhlenius H, Moritz T, Nilsson O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 2006, 18(9): 2172-2181.
pmid: 16920780 |
[8] | Murakami Y. Endogenous gibberellins in the panicle of rice plants determined by the rice seedling bioassay. Jarq-Jpn Agr Res Q, 1983, 17(3): 154-160. |
[9] | Kobayashi M, Sakurai A, Saka H, Takahashi N. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol, 1989, 30(7): 963-969. |
[10] | Kobayashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N. Fluctuation and localization of endogenous gibberellins in rice. Agr Biol Chem, 1988, 5(52): 1189-1194. |
[11] |
Hasegawa M, Nakajima M, Takeda K, Yamaguchi I, Murofushi N. Endogenous levels of gibberellins in normal and male sterile anthers of rice (Oryza sativa cv. Nihonmasari). Biosci Biotech Bioch, 1995, 59(9): 1716-1720.
doi: 10.1271/bbb.59.1716 |
[12] |
Honda I, Iwasaki S, Sudo K, Kato H, Maruyama K, Hasegawa M, Yamaguchi I, Murofushi N, Yanagisawa T, Takahashi N. Semi quantification of gibberellins in the anthers of thermosensitive genetic male sterile rice (Oryza sativa L. cv.PL12). Biosci Biotech Bioch, 1997, 61(10): 1748-1750.
doi: 10.1271/bbb.61.1748 |
[13] |
Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134(4): 1642-1653.
doi: 10.1104/pp.103.033696 pmid: 15075394 |
[14] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YIC, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437(7059): 693-698.
doi: 10.1038/nature04028 |
[15] |
Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19(7): 2140-2155.
doi: 10.1105/tpc.106.043729 pmid: 17644730 |
[16] |
Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin- dependent degradation of SLR1 in rice. Plant J, 2004, 37(4): 626-634.
doi: 10.1111/j.1365-313X.2003.01990.x |
[17] | Olszewski N, Sun TP, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell, 2002, 14(Suppl): S61-S80. |
[18] |
Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20(10): 2603-2618.
doi: 10.1105/tpc.108.060913 |
[19] |
Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact, 2013, 26(2): 227-239.
doi: 10.1094/MPMI-05-12-0138-R |
[20] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99(13): 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[21] |
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98(5): 8909-8914.
doi: 10.1073/pnas.141239398 |
[22] | Murakami Y. Dwarfing genes in rice and their relation to glbberellin biosynthesis. In: Carr DJ, Plant Growth Substances. Springer-Verlag, Berlin, Germany, eds. 1970, 166-174. |
[23] |
Hu SK, Hu XM, Hu J, Shang LG, Dong GJ, Zeng DL, Gou LB, Qian Q. Xiaowei, a new rice germplasm for large- scale indoor research. Mol Plant, 2018, 11(11): 1418-1420.
doi: 10.1016/j.molp.2018.08.003 |
[24] | Kobayashi M, Kamiya Y, Sakurai A, Saka H, Takahashi N. Metabolism of gibberellins in cell-free extracts of anthers from normal and dwarf rice. Plant Cell Physiol, 1990, 31(2): 289-293. |
[25] |
Miao J, Guo DS, Zhang JZ, Huang QP, Qin GJ, Zhang X, Wan JM, Gu HY, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23(10): 1233-1236.
doi: 10.1038/cr.2013.123 pmid: 23999856 |
[26] |
Li J, Huang Y, Tan H, Yang X, Tian LF, Luan S, Chen LB, Li DP. An endoplasmic reticulum magnesium transporter is essential for pollen development in Arabidopsis. Plant Sci, 2015, 231: 212-220.
doi: 10.1016/j.plantsci.2014.12.008 pmid: 25576006 |
[27] |
Chen ML, Fu XM, Liu JQ, Ye TT, Hou SY, Huang YQ, Yuan BF, Wu Y, Feng YQ. Highly sensitive and quantitative profiling of acidic phytohormones using derivatization approach coupled with nano-LC-ESI-Q- TOF-MS analysis. J Chromatogr B, 2012, 905: 67-74.
doi: 10.1016/j.jchromb.2012.08.005 |
[28] |
Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M. Characterization of XET-related genes of rice. Plant Physiol, 2000, 122(3): 853-859.
pmid: 10712549 |
[29] |
Lee Y, Kende H. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol, 2001, 127(2): 645-654.
pmid: 11598238 |
[30] |
Lee Y, Kende H. Expression of α-expansin and expansin- like genes in deepwater rice. Plant Physiol, 2002, 130(3): 1396-1405.
doi: 10.1104/pp.008888 pmid: 12428004 |
[31] | Hao XH, Xiang YT, Zeng M, Yang YW, Xie P, Li M, Li DP, Tian LF. Cytological characteristics and gene location of a rice Dwarf mutant. Life Sci Res, 2021, 25(1): 39-47. |
郝小花, 向玉婷, 曾孟, 杨友伟, 谢鹏, 李密, 李东屏, 田连福. 水稻矮杆突变体的细胞学特征及基因定位研究. 生命科学研究, 2021, 25(1): 39-47. | |
[32] |
Lu YZ, Feng Z, Meng YL, Bian LY, Xie H, Mysore KS, Liang JS. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 regulating OsmiR396 are involved in stem elongation. Plant Physiol, 2020, 182(4): 2213-2227.
doi: 10.1104/pp.19.01008 |
[33] |
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu JZ, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361(6398): 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253 |
[34] |
Cheng JY, Hill CB, Shabala S, Li CD, Zhou MX. Manipulating GA-related genes for cereal crop improvement. Int J Mol Sci, 2022, 23(22): 14046.
doi: 10.3390/ijms232214046 |
[35] | Cheng XY, Huang YP, Tan Y, Tan L, Yin JH, Zou GX. Potentially useful dwarfing or semi-dwarfing genes in rice breeding in addition to the sd1 gene. Rice (N Y), 2022, 15(1): 66. |
[1] | Rongrong Mu, Qingqing Niu, Yuqiang Sun, Jun Mei, Meng Miao. Cloning and characterization of the MYB transcription factor gene GhTT2 in Gossypium hirsutum [J]. Hereditas(Beijing), 2022, 44(8): 720-728. |
[2] | Wenya Guo,Yanmei Cui,Tingting Wang,Deyue YU,Fang Huang. Functional analysis of flower development related gene GsLFY from Glycine soja [J]. Hereditas(Beijing), 2017, 39(1): 56-65. |
[3] | YANG Xiu-Qin, CHEN Yue-Chan, WANG Li-ang, LI Hai-Tao, LIU Di, GUAN Qing-Zhi, FU Bo. Functional analysis of SNPs in porcine TLR4 gene [J]. HEREDITAS, 2012, 34(8): 1050-1056. |
[4] | WANG Fei-Juan, ZHU Cheng. Heterologous expression of a rice syntaxin-related protein KNOLLE gene (OsKNOLLE) in yeast and its functional analysis in the role of abiotic stress [J]. HEREDITAS, 2011, 33(11): 1251-1257. |
[5] | ZHOU Shuang, XU Ke, HE Ming-Xiong, ZHANG Yi-Zheng. Site-directed mutagenesis and function analysis of glgC gene from Escherichia coli [J]. HEREDITAS, 2008, 30(10): 1372-1378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号