[1] | Minch KJ, Rustad TR, Peterson EJR, Winkler J, Reiss DJ, Ma SY, Hickey M, Brabant W, Morrison B, Turkarslan S, Mawhinney C, Galagan JE, Price ND, Baliga NS, Sherman DR . The DNA-binding network of Mycobacterium tuberculosis. Nat Commun, 2015,6:5829. | [2] | WHO. Global tuberculosis report 2017. 2017. | [3] | Sosa ADJ, Byarugaba DK, Amábile-Cuevas CF, Hsueh PR, Kariuki S, Okeke IN . Antimicrobial Resistance in Developing Countries. New York: Springer, 2010. | [4] | Cole ST, Eisenach KD, McMurray DN, Jacobs WR, Jr. Tuberculosis and the Tubercle Bacillus. Washington,DC: ASM Press, 2005. | [5] | Wax RG, Lewis K, Salyers AA, Taber H. Bacterial Resistance to Antimicrobials. 2nd ed. Boca Raton: CRC Press, 2008. | [6] | Alvarez-Jiménez VD, Leyva-Paredes K, García-Martínez M, Vázquez-Flores L, García-Paredes VG, Campillo- Navarro M, Romo-Cruz I, Rosales-García VH, Castañeda-Casimiro J, González-Pozos S, Hernández JM, Wong-Baeza C, García-Pérez BE, Ortiz-Navarrete V, Estrada-Parra S, Serafin-López J, Wong-Baeza I, Chacón-Salinas R, Estrada-García I . Extracellular vesicles released from Mycobacterium tuberculosis- infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival.Front Immunol, 2018,9:272. | [7] | Da Costa AC, De Resende DP, de P. O. Santos B, Zoccal KF, Faccioli LH, Kipnis A, Junqueira-Kipnis AP. Modulation of macrophage responses by CMX, a fusion protein composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis. Front Microbiol, 2017,8:623. | [8] | Agnihotri J, Singh S, Wais M, Pathak A . Macrophage targeted cellular carriers for effective delivery of anti- tubercular drugs. Recent Pat Antiinfect Drug Discov, 2017,12(2):162-183. | [9] | Cambier CJ, Falkow S, Ramakrishnan L . Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell, 2014,159(7):1497-1509. | [10] | Wang C, Cui YH, Qu XJ . Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol, 2018,200(2):195-201. | [11] | Lund P, Tramonti A, De Biase D . Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev, 2014,38(6):1091-1125. | [12] | Guo XL, Liu HG . Study on the Effect of Toll-like Receptors in mediation of immune responses in Mycobacterium tuberculosis infection. Medical Recapitulate, 2015,21(12):2142-2145. | [12] | 郭雪玲, 刘辉国 . Toll样受体在介导结核分枝杆菌感染免疫反应中的作用. 医学综述, 2015,21(12):2142-2145. | [13] | Nkwouano V, Witkowski S, Rehberg N, Kalscheuer R, Nausch N, Mayatepe |
[1] |
Ke Mao, Ziqiu Meng, Yongbiao Zhang.
Progress on the regulation of neural crest and the genetics in craniofacial development
[J]. Hereditas(Beijing), 2022, 44(12): 1089-1102.
|
[2] |
Lili Yu,Wanru Dong,Minghui Chen,Xiangyang Kong.
Progress in the molecular genetic mechanism of gonadoblastoma
[J]. HEREDITAS(Beijing), 2015, 37(11): 1105-1115.
|
[3] |
TANG Xiao-Li DENG Li-Bin LIN Jia-Ri ZHANG Wei-Long LIU Shuang-Mei WEI Yi MEI Pu-Ming WANG Yan LIANG Shang-Dong.
Sterol regulatory element binding protein 1 and its target gene networks
[J]. HEREDITAS, 2013, 35(5): 607-615.
|
[4] |
GUAN Ling-Liang HOU Kai CHEN Jun-Wen XU Ying-Wen WU Wei.
Phylogeny and functional divergence of ω-6 and ω-3 fatty acid desaturase families
[J]. HEREDITAS, 2013, 35(5): 643-654.
|
[5] |
XIE Chong-Bei, JIN Gu-Lei, XU Hai-Meng, SHU Jun.
Construction and analysis of SOS pathway-related transcriptional regulatory network underlying salt stress response in Arabidopsis
[J]. HEREDITAS, 2010, 32(6): 639-646.
|
[6] |
WANG Zheng-Hua, LIU Qi-Jun, ZHU Yun-Ping.
Research on modular organization of gene regulatory network
[J]. HEREDITAS, 2008, 30(1): 20-27.
|
[7] |
LIU Wan-Lin, LI Dong, ZHU Yun-Ping, HE Fu-Chu.
Constructing gene regulatory network from microarray data
[J]. HEREDITAS, 2007, 29(12): 1434-1434―1442.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|