[1] | Ambros V . microRNAs: tiny regulators with great potential. Cell, 2001,107(7):823-826. | [2] | Lai EC . Micro RNAs are complementary to 3° UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002,30(4):363-364. | [3] | Kozomara A , Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 2014,42(Database issue):D68-D73. | [4] | Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in caenorhabditis elegans. Science, 2001,294(5543):858-862. | [5] | Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002,21(17):4663-4670. | [6] | Nishimura K, Ohtaka M, Takada H, Kurisaki A, Tran NVK, Tran YTH, Hisatake K, Sano M, Nakanishi M . Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Stem Cell Res, 2017,23:13-9. | [7] | Barroso-del Jesus A, Lucena-Aguilar G, Menendez P . The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle, 2009,8(3):394-398. | [8] | Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT . Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res, 2011,39(3):1054-1065. | [9] | Li Z, Yang CS, Nakashima K, Rana TM . Small RNA-mediated regulation of iPS cell generation. EMBO J, 2011,30(5):823-834. | [10] | Pu JY, Wu SY, Xie HP, Li YY, Yang ZC, Wu XW, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol, 2017,162(12):3645-3659. | [11] | Magilnick N, Reyes EY, Wang WL, Vonderfecht SL, Gohda J, Inoue JI, Boldin MP. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci USA, 2017,114(34):E7140-E7149. | [12] | Horak M, Novak J, Bienertova-Vasku J . Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 2016,410(1):1-13. | [13] | Ma WB, Hu SG, Yao GX, Xie SS, Ni MJ, Liu Q, Gao XX, Zhang J, Huang XX, Zhang YL . An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem, 2013,288(41):29369-29381. | [14] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [15] | Xie SS, Zhang Y, Zhang LS, Li GL, Zhao CZ, Ni P, Zhao SH. sgRNA design for the C |
[1] |
Wenrui Shi, Hongzhu Qu, Xiangdong Fang.
Overview of multi-omics research in gout
[J]. Hereditas(Beijing), 2023, 45(8): 643-657.
|
[2] |
Bingzheng Wang, Chao Zhang, Jiali Zhang, Jin Sun.
Conditional editing of the Drosophila melanogaster genome using single transcripts expressing Cas9 and sgRNA
[J]. Hereditas(Beijing), 2023, 45(7): 593-601.
|
[3] |
Lan Wang, Fan Zeng, Rongfeng Huang, Shu Lin, Zhihui Zhang, Min-Dian Li.
Adipocyte reconstitution of Npy4r gene in Npy4r silenced mice promotes diet-induced obesity
[J]. Hereditas(Beijing), 2023, 45(2): 144-155.
|
[4] |
Yanan Li, Xianjun Zhang, Ning Zhang, Yalin Liang, Yuxing Zhang, Huaxing Zhao, Zicong Li, Sixiu Huang.
Effects of overexpression of histone H3K9me3 demethylase on development of porcine cloned embryos
[J]. Hereditas(Beijing), 2023, 45(1): 67-77.
|
[5] |
Fei Gao, Yu Wang, Jiaxiang Du, Xuguang Du, Jianguo Zhao, Dengke Pan, Sen Wu, Yaofeng Zhao.
Advances and applications of genetically modified pig models in biomedical and agricultural field
[J]. Hereditas(Beijing), 2023, 45(1): 6-28.
|
[6] |
Meizhen Liu, Liren Wang, Yongmei Li, Xueyun Ma, Honghui Han, Dali Li.
Generation of genetically modified rat models via the CRISPR/Cas9 technology
[J]. Hereditas(Beijing), 2023, 45(1): 78-87.
|
[7] |
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
[J]. Hereditas(Beijing), 2022, 44(8): 708-719.
|
[8] |
Chong Zhang, Zixuan Wei, Min Wang, Yaosheng Chen, Zuyong He.
Editing MC1R in human melanoma cells by CRISPR/Cas9 and functional analysis
[J]. Hereditas(Beijing), 2022, 44(7): 581-590.
|
[9] |
Mengxuan Xu, Ming Zhou.
Advances of RNA polymerase IV in controlling DNA methylation and development in plants
[J]. Hereditas(Beijing), 2022, 44(7): 567-580.
|
[10] |
Yan Zhao, Chenxin Wang, Tianming Yang, Chunshuang Li, Lihong Zhang, Dongni Du, Ruoxi Wang, Jing Wang, Min Wei, Xueqing Ba.
Linking oxidative DNA lesion 8-OxoG to tumor development and progression
[J]. Hereditas(Beijing), 2022, 44(6): 466-477.
|
[11] |
Hui Qu, Yi Liu, Yawen Chen, Hui Wang.
Alteration of imprinted genes and offspring organ development caused by environmental factors
[J]. Hereditas(Beijing), 2022, 44(2): 107-116.
|
[12] |
Yangjinghui Zhang, Peiyao Chang, Zishu Yang, Yuhang Xue, Xueqi Li, Yang Zhang.
Advances in epigenetic modification affecting anthocyanin synthesis
[J]. Hereditas(Beijing), 2022, 44(12): 1117-1127.
|
[13] |
Yao Liu, Xianhui Zhou, Shuhong Huang, Xiaolong Wang.
Prime editing: a search and replace tool with versatile base changes
[J]. Hereditas(Beijing), 2022, 44(11): 993-1008.
|
[14] |
Qingwen Zhao, Dongning Pan.
Progress on the epigenetic regulation of adipose tissue thermogenesis
[J]. Hereditas(Beijing), 2022, 44(10): 867-880.
|
[15] |
Jiayu Yu, Ting Chen, Zhihua Wang, Juan Zheng, Tianshu Zeng.
Diagnosis, treatment and genetic analysis of a case of skin hyperpigmentation as the only manifestation with X-linked adrenoleukodystrophy
[J]. Hereditas(Beijing), 2022, 44(10): 983-989.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
|