Hereditas(Beijing) ›› 2023, Vol. 45 ›› Issue (3): 212-220.doi: 10.16288/j.yczz.22-422
• Review • Previous Articles Next Articles
Xiaokang Shang(), Simeng Zhang(
), Junjun Ni(
)
Received:
2022-12-26
Revised:
2023-02-15
Online:
2023-03-20
Published:
2023-02-21
Contact:
Ni Junjun
E-mail:1120202339@bit.edu.cn;zhangsimeng0301@163.com;nijunjun@bit.edu.cn
Supported by:
Xiaokang Shang, Simeng Zhang, Junjun Ni. Research progress of cathepsin B in brain aging and Alzheimer’s diseases[J]. Hereditas(Beijing), 2023, 45(3): 212-220.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Ni JJ, Lan F, Xu Y, Nakanishi H, Li X. Extralysosomal cathepsin B in central nervous system: mechanisms and therapeutic implications. Brain Pathol, 2022, 32(5): e13071. |
[2] |
Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J, 1991, 10(9): 2321-2330.
doi: 10.1002/j.1460-2075.1991.tb07771.x pmid: 1868826 |
[3] |
Illy C, Quraishi O, Wang J, Purisima E, Vernet T, Mort JS. Role of the occluding loop in cathepsin B activity. J Biol Chem, 1997, 272(2): 1197-1202.
doi: 10.1074/jbc.272.2.1197 pmid: 8995421 |
[4] |
Mijanović O, Branković A, Panin AN, Savchuk S, Timashev P, Ulasov I, Lesniak MS. Cathepsin B: a sellsword of cancer progression. Cancer Lett, 2019, 449: 207-214.
doi: S0304-3835(19)30113-2 pmid: 30796968 |
[5] | Schechter I, Berger A.On the size of the active site in proteases. I. Papain. 1967. Biochem Biophys Res Commun, 2012, 425(3): 497-502. |
[6] |
Gosalia DN, Salisbury CM, Ellman JA, Diamond SL. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol Cell Proteomics, 2005, 4(5): 626-636.
doi: 10.1074/mcp.M500004-MCP200 pmid: 15705970 |
[7] |
Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem, 2006, 281(18): 12824-12832.
doi: 10.1074/jbc.M513331200 pmid: 16520377 |
[8] |
Howie AJ, Burnett D, Crocker J. The distribution of cathepsin B in human tissues. J Pathol, 1985, 145(4): 307-314.
doi: 10.1002/path.1711450404 pmid: 3889245 |
[9] |
Bernstein HG, Kirschke H, Wiederanders B, Schmidt D, Rinne A. Antigenic expression of cathepsin B in aged human brain. Brain Res Bull, 1990, 24(4): 543-549.
pmid: 2357585 |
[10] |
Nakamura Y, Takeda M, Suzuki H, Hattori H, Tada K, Hariguchi S, Hashimoto S, Nishimura T. Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci Lett, 1991, 130(2): 195-198.
doi: 10.1016/0304-3940(91)90395-a pmid: 1795881 |
[11] |
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence for E64d as a promising lead drug candidate. Front Neurol, 2015, 6: 178.
doi: 10.3389/fneur.2015.00178 pmid: 26388830 |
[12] |
Erdel M, Trefz G, Spiess E, Habermaas S, Spring H, Lah T, Ebert W. Localization of cathepsin B in two human lung cancer cell lines. J Histochem Cytochem, 1990, 38(9): 1313-1321.
pmid: 2201737 |
[13] |
Uchiyama Y, Nakajima M, Watanabe T, Waguri S, Sato N, Yamamoto M, Hashizume Y, Kominami E. Immunocytochemical localization of cathepsin B in rat anterior pituitary endocrine cells, with special reference to its co-localization with renin and prorenin in gonadotrophs. J Histochem Cytochem, 1991, 39(9): 1199-1205.
pmid: 1918937 |
[14] | Hernandez ML, Marone M, Gorse KM, Lafrenaye AD. Cathepsin B relocalization in late membrane disrupted neurons following diffuse brain injury in rats. ASN Neuro, 2022, 14: 17590914221099112. |
[15] | Cavallo-Medved D, Moin K, Sloane B. Cathepsin B: basis sequence: mouse. AFCS Nat Mol Pages, 2011, 2011: A000508. |
[16] |
Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Rao JS. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene, 2004, 23(27): 4681-4689.
doi: 10.1038/sj.onc.1207616 pmid: 15122332 |
[17] |
Roberts LR, Kurosawa H, Bronk SF, Fesmier PJ, Agellon LB, Leung WY, Mao F, Gores GJ. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology, 1997, 113(5): 1714-1726.
pmid: 9352877 |
[18] |
Ni JJ, Wu Z, Stoka V, Meng J, Hayashi Y, Peters C, Qing H, Turk V, Nakanishi H. Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice. Aging Cell, 2019, 18(1): e12856.
doi: 10.1111/acel.2019.18.issue-1 |
[19] |
Meng J, Liu YC, Xie Z, Qing H, Lei P, Ni JJ. Nucleus distribution of cathepsin B in senescent microglia promotes brain aging through degradation of sirtuins. Neurobiol Aging, 2020, 96: 255-266.
doi: 10.1016/j.neurobiolaging.2020.09.001 pmid: 33049518 |
[20] |
Blinkouskaya Y, Caçoilo A, Gollamudi T, Jalalian S, Weickenmeier J. Brain aging mechanisms with mechanical manifestations. Mech Ageing Dev, 2021, 200: 111575.
doi: 10.1016/j.mad.2021.111575 |
[21] |
Isaev NK, Stelmashook EV, Genrikhs EE, Oborina MV, Kapkaeva MR, Skulachev VP. Alzheimer's disease: an exacerbation of senile phenoptosis. Biochemistry (Mosc), 2015, 80(12): 1578-1581.
doi: 10.1134/S0006297915120056 |
[22] |
Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology, 2015, 96(Pt A):11-18.
doi: 10.1016/j.neuropharm.2014.12.020 pmid: 25549562 |
[23] |
Yuan J, Cai SQ. The regulatory mechanisms of behavioral and cognitive aging. Hereditas(Beijing), 2021, 43(6): 545-570.
doi: 10.16288/j.yczz.21-060 pmid: 34284987 |
袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究. 遗传, 2021, 43(6): 545-570.
doi: 10.16288/j.yczz.21-060 pmid: 34284987 |
|
[24] |
Burns A, Iliffe S. Alzheimer's disease. BMJ, 2009, 338: b158.
doi: 10.1136/bmj.b158 |
[25] | Xiong WD, Xu KY, Lu L, Li JL. Research progress on lncRNAs in Alzheimer's disease. Hereditas(Beijing), 2022, 44(3): 189-197. |
熊婉迪, 徐开宇, 陆林, 李家立. 长链非编码RNA在阿尔茨海默病中的研究进展.遗传, 2022, 44(3): 189-197. | |
[26] |
Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF, Fox N, Kennedy A, Rossor M, Brooks DJ. Microglia, amyloid, and cognition in Alzheimer's disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis, 2008, 32(3): 412-419.
doi: 10.1016/j.nbd.2008.08.001 pmid: 18786637 |
[27] |
McGeer EG, McGeer PL. Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis, 2010, 19(1): 355-361.
doi: 10.3233/JAD-2010-1219 pmid: 20061650 |
[28] |
Takahashi RH, Almeida CG, Kearney PF, Yu FM, Lin MT, Milner TA, Gouras GK. Oligomerization of Alzheimer's beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci, 2004, 24(14): 3592-3599.
doi: 10.1523/JNEUROSCI.5167-03.2004 pmid: 15071107 |
[29] |
Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E. Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer's disease. Acta Neuropathol, 2010, 119(5): 523-541.
doi: 10.1007/s00401-010-0679-9 pmid: 20354705 |
[30] |
Goedert M, Spillantini MG. A century of Alzheimer's disease. Science, 2006, 314(5800): 777-781.
doi: 10.1126/science.1132814 pmid: 17082447 |
[31] |
Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer's disease: mechanisms and therapeutic strategies. Curr Alzheimer Res, 2018, 15(3): 283-300.
doi: 10.2174/1567205014666170417111859 pmid: 28413986 |
[32] |
Spittau B. Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases. Front Aging Neurosci, 2017, 9: 194.
doi: 10.3389/fnagi.2017.00194 pmid: 28659790 |
[33] |
Leng FD. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol, 2021, 17(3): 157-172.
doi: 10.1038/s41582-020-00435-y pmid: 33318676 |
[34] |
Harry GJ. Microglia during development and aging. Pharmacol Ther, 2013, 139(3): 313-326.
doi: 10.1016/j.pharmthera.2013.04.013 |
[35] |
Tremblay MÈ, Zettel ML, Ison JR, Allen PD, Majewska AK. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia, 2012, 60(4): 541-558.
doi: 10.1002/glia.22287 |
[36] |
von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci, 2015, 7: 124.
doi: 10.3389/fnagi.2015.00124 pmid: 26257642 |
[37] |
Nakanishi H. Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev, 2003, 2(4): 367-381.
pmid: 14522241 |
[38] | Islam MI, Nagakannan P, Shcholok T, Contu F, Mai S, Albensi BC, Del Bigio MR, Wang JF, Sharoar MG, Yan RQ, Park IS, Eftekharpour E. Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease. Aging Cell, 2022, 21(1): e13531. |
[39] |
Amano T, Nakanishi H, Kondo T, Tanaka T, Oka M, Yamamoto K. Age-related changes in cellular localization and enzymatic activities of cathepsins B, L and D in the rat trigeminal ganglion neuron. Mech Ageing Dev, 1995, 83(3): 133-141.
pmid: 8583832 |
[40] |
Nakanishi H, Wu Z. Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res, 2009, 201(1): 1-7.
doi: 10.1016/j.bbr.2009.02.001 pmid: 19428609 |
[41] |
Nakanishi H. Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural Regen Res, 2020, 15(1): 25-29.
doi: 10.4103/1673-5374.264444 pmid: 31535638 |
[42] | Pan YF, Wang YY, Chen JW, Fan YM. Mitochondrial metabolism's effect on epigenetic change and aging. Hereditas(Beijing), 2019, 41(10): 893-904. |
潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究. 遗传, 2019, 41(10): 893-904. | |
[43] |
Arantes RME, Andrews NW. A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J Neurosci, 2006, 26(17): 4630-4637.
doi: 10.1523/JNEUROSCI.0009-06.2006 pmid: 16641243 |
[44] |
Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong RD, Hedegaard A, Hart ML, Emptage NJ. Activity- dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron, 2017, 93(1): 132-146.
doi: S0896-6273(16)30851-0 pmid: 27989455 |
[45] |
Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab, 2016, 24(2): 332-340.
doi: 10.1016/j.cmet.2016.05.025 pmid: 27345423 |
[46] |
Hook V, Yoon M, Mosier C, Ito G, Podvin S, Head BP, Rissman R, O'Donoghue AJ, Hook G. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta Proteins Proteom, 2020, 1868(8): 140428.
doi: 10.1016/j.bbapap.2020.140428 |
[47] |
Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol, 2011, 187(10): 5440-5451.
doi: 10.4049/jimmunol.1100790 pmid: 22003197 |
[48] |
Ruff RL, Secrist D. Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. J Clin Invest, 1984, 73(5): 1483-1486.
pmid: 6715547 |
[49] |
Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, Nakanishi H. Involvement of cathepsin B in the processing and secretion of interleukin-1beta in chromogranin A-stimulated microglia. Glia, 2010, 58(1): 114-124.
doi: 10.1002/glia.20906 pmid: 19544382 |
[50] | Li JL, Li J, Wang H. Age-associated proteostasis collapse. Hereditas (Beijing), 2022, 44(9): 733-744. |
黎嘉丽, 李瑾, 汪虎. 衰老相关的蛋白稳态失衡. 遗传, 2022, 44(9): 733-744. | |
[51] |
Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci, 2019, 11: 233.
doi: 10.3389/fnagi.2019.00233 |
[52] |
Wu Z, Ni JJ, Liu YC, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun, 2017, 65: 350-361.
doi: S0889-1591(17)30189-7 pmid: 28610747 |
[53] |
Wang C, Sun BG, Zhou YG, Grubb A, Gan L. Cathepsin B degrades amyloid-β in mice expressing wild-type human amyloid precursor protein. J Biol Chem, 2012, 287(47): 39834-39841.
doi: 10.1074/jbc.M112.371641 pmid: 23024364 |
[54] |
Mueller-Steiner S, Zhou YG, Arai H, Roberson ED, Sun BG, Chen J, Wang X, Yu GQ, Esposito L, Mucke L, Gan L. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer's disease. Neuron, 2006, 51(6): 703-714.
doi: 10.1016/j.neuron.2006.07.027 pmid: 16982417 |
[55] |
Sen A, Capelli V, Husain M. Cognition and dementia in older patients with epilepsy. Brain, 2018, 141(6): 1592-1608.
doi: 10.1093/brain/awy022 pmid: 29506031 |
[56] |
Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht- Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol, 2003, 56(4): 315-327.
doi: 10.1002/neu.10253 pmid: 12918016 |
[57] |
Sun YX, Dai DK, Liu R, Wang T, Luo CL, Bao HJ, Yang R, Feng XY, Qin ZH, Chen XP, Tao LY. Therapeutic effect of SN50, an inhibitor of nuclear factor-κB, in treatment of TBI in mice. Neurol Sci, 2013, 34(3): 345-355.
doi: 10.1007/s10072-012-1007-z |
[58] |
Kominami E, Tsukahara T, Bando Y, Katunuma N. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem, 1985, 98(1): 87-93.
pmid: 3900059 |
[59] |
Hook GR, Yu J, Sipes N, Pierschbacher MD, Hook V, Kindy MS. The cysteine protease cathepsin B is a key drug target and cysteine protease inhibitors are potential therapeutics for traumatic brain injury. J Neurotrauma, 2014, 31(5): 515-529.
doi: 10.1089/neu.2013.2944 |
[60] | Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, Tao LY. Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res, 2010, 88(13): 2847-2858. |
[1] | Shan He, Jian Zhao, Xiaofeng Song. Effects of N6-methyladenosine modification on the function of the female reproductive system [J]. Hereditas(Beijing), 2023, 45(6): 472-487. |
[2] | Qian Zhang, Zihao Wang, Ye Tian. Inter-tissue communication of mitochondrial stress in aging [J]. Hereditas(Beijing), 2023, 45(3): 187-197. |
[3] | Jiali Li, Jin Li, Hu Wang. Age-associated proteostasis collapse [J]. Hereditas(Beijing), 2022, 44(9): 733-744. |
[4] | Pengfei Zheng, Haibo Xie, Panpan Zhu, Chengtian Zhao. Distribution pattern of floor plate neurons in zebrafish [J]. Hereditas(Beijing), 2022, 44(6): 510-520. |
[5] | Wandi Xiong, Kaiyu Xu, Lin Lu, Jiali Li. Research progress on lncRNAs in Alzheimer’s disease [J]. Hereditas(Beijing), 2022, 44(3): 189-197. |
[6] | Jie Yuan, Shiqing Cai. The regulatory mechanisms of behavioral and cognitive aging [J]. Hereditas(Beijing), 2021, 43(6): 545-570. |
[7] | Ziyan Liu, Ai Gao. Progress on inflamm-aging in hematologic diseases [J]. Hereditas(Beijing), 2021, 43(12): 1132-1141. |
[8] | Xuewen Liu, Hongmei Wu, Ying Bai, Qun Zeng, Zemin Cao, Xiushan Wu, Min Tang. Potassium channel Shaker play a protective role against cardiac aging in Drosophila [J]. Hereditas(Beijing), 2021, 43(1): 94-99. |
[9] | Chuanming Liu,Lijun Ding,Jiayin Li,Jianwu Dai,Haixiang Sun. Advances in the study of ovarian dysfunction with aging [J]. Hereditas(Beijing), 2019, 41(9): 816-826. |
[10] | Fang Li,Qingyun Huang,Sijia Liu,Zhongxin Guo,Xinxin Xiong,Lin Gui,Huijuan Shu,Shaoming Huang,Guohe Tan,Yuanyuan Liu. The role of Bmal1 in neuronal radial migration and axonal projection of the embryonic mouse cerebral cortex [J]. Hereditas(Beijing), 2019, 41(6): 524-533. |
[11] | Yunfeng Pan, Yanyi Wang, Jingwen Chen, Yimei Fan. Mitochondrial metabolism’s effect on epigenetic change and aging [J]. Hereditas(Beijing), 2019, 41(10): 893-904. |
[12] | Xiulian Shen, Yichao Lu, Zhilian Jia, Qiang Wu. N-WASP regulates cortical neuron migration through its polyPro and VCA domains [J]. Hereditas(Beijing), 2018, 40(5): 390-401. |
[13] | Xiumei Zhang, Jie Gao, Chunhong Chen, Haijun Tu. Progress in the mechanisms of neural modulation of innate immunity in Caenorhabditis elegans [J]. Hereditas(Beijing), 2018, 40(12): 1066-1074. |
[14] | Hongdong Li,Guini Hong,Zheng Guo. Age-related DNA methylation changes in peripheral whole blood [J]. HEREDITAS(Beijing), 2015, 37(2): 165-173. |
[15] | Wanjin Chen, Qijie Zhang, Jin He, Xiang Lin, Ning Wang. The construction of urine-derived cell lines from patients with spinal muscular atrophy [J]. HEREDITAS(Beijing), 2014, 36(11): 1168-1172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号