Hereditas(Beijing) ›› 2024, Vol. 46 ›› Issue (12): 1055-1065.doi: 10.16288/j.yczz.24-230
• Research Article • Previous Articles Next Articles
Yao Chen(), Xin Wen, Fangyuan Yuan, Chaoling Peng, Cuizhe Wang, Jun Zhang(
), Pingping Meng(
)
Received:
2024-08-25
Revised:
2024-10-25
Online:
2024-12-20
Published:
2024-11-15
Contact:
Jun Zhang, Pingping Meng
E-mail:1694094508@qq.com;zhangjunyc@163.com;mengvictoria@126.com
Supported by:
Yao Chen, Xin Wen, Fangyuan Yuan, Chaoling Peng, Cuizhe Wang, Jun Zhang, Pingping Meng. Screening and validation of downstream target genes of SLC25A21 based on bioinformatics[J]. Hereditas(Beijing), 2024, 46(12): 1055-1065.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Primer sequences used in this study"
基因 | 上游引物序列(5′→3′) | 下游引物序列(5′→3′) |
---|---|---|
GRB2 | GCAAAATCCCCAGAGCCAAG | GCAAAATCCCCAGAGCCAAG |
SOS1 | GAGACATCCCACACCTCTGC | ATGCTGTGCTTTCCGTCTCA |
SHC1 | TTCGCCAAGACAACTGAGCA | TGCCCGAAAGCAGAAGGTAG |
CBL | CAGGCAGGGAGTTAGCACAA | TCACGGCAAGCCTACAGAAC |
HRAS | ACCGGAAACAGGTGGTCATT | TCCCGCATGGCACTATACTC |
KRAS | GCGCCTTGACGATACAGCTAA | TACACAAAGAAAGCCCTCCCC |
SOS2 | GGCGTTAGAAAAAGGCGAGC | AACCCAGTGGCGAAAGACAT |
EGFR | GCAATGTTCCCATCGCTGTC | CAGGTGTCTTTGCATGTGGC |
PLCG2 | GATGAGGCTTCGATACCCCG | CTGCGCTTGGCTTTGTAGTC |
MET | CCCAGCCCAAACTACCTCTG | ACCAGCTTTGGGAGGCTAAC |
Table 2
The preprocessing results of sequencing data quality"
样本 | 原始reads 数目(M) | 原始测 序量(Gb) | 过滤后的 reads数目(M) | 过滤后的 测序量(Gb) | 有效碱基 百分比(%) | Q30(%) | GC(%) |
---|---|---|---|---|---|---|---|
NC1 | 48.63 | 7.16 | 46.9 | 6.91 | 96.45 | 93.26 | 50.74 |
NC2 | 49.27 | 7.26 | 47.57 | 7.01 | 96.54 | 93.34 | 50.59 |
NC3 | 49.27 | 7.23 | 47.35 | 6.95 | 96.1 | 93.31 | 50.75 |
OE1 | 49.87 | 7.32 | 47.93 | 7.04 | 96.11 | 93.17 | 50.74 |
OE2 | 48.81 | 7.2 | 47.11 | 6.95 | 96.52 | 93.1 | 50.63 |
OE3 | 48.29 | 7.14 | 46.79 | 6.92 | 96.9 | 93.32 | 50.28 |
Table 3
The results of sequencing reads and genome comparison"
样本 | Total reads | Total mapped reads | Multiple mapped | Uniquely mapped | Read | Non-splice reads | Splice reads | Reads mapped in proper pairs |
---|---|---|---|---|---|---|---|---|
NC1 | 46899752 | 45533180 (97.09%) | 2265197 (4.83%) | 43267983 (92.26%) | 21654638 (46.17%) | 24015475 (51.21%) | 19252508 (41.05%) | 42694074 (91.03%) |
NC2 | 47565180 | 46131900 (96.99%) | 2324947 (4.89%) | 43806953 (92.10%) | 21919628 (46.08%) | 24346626 (51.19%) | 19460327 (40.91%) | 43211796 (90.85%) |
NC3 | 47350582 | 45976707 (97.10%) | 2344644 (4.95%) | 43632063 (92.15%) | 21837383 (46.12%) | 24004218 (50.69%) | 19627845 (41.45%) | 43059252 (90.94%) |
OE1 | 47933810 | 46408234 (96.82%) | 2373324 (4.95%) | 44034910 (91.87%) | 22039724 (45.98%) | 24351292 (50.80%) | 19683618 (41.06%) | 43439056 (90.62%) |
OE2 | 47107546 | 45678757 (96.97%) | 2316938 (4.92%) | 43361819 (92.05%) | 21709112 (46.08%) | 23931808 (50.80%) | 19430011 (41.25%) | 42764390 (90.78%) |
OE3 | 46791584 | 45401464 (97.03%) | 2315495 (4.95%) | 43085969 (92.08%) | 21568015 (46.09%) | 24044762 (51.39%) | 19041207 (40.69%) | 42485994 (90.80%) |
[1] | Liu AR, Liu YN, Shen SX, Yan LR, Lv Z, Ding HX, Wang A, Yuan Y, Xu Q. Comprehensive analysis and validation of solute carrier family 25 (SLC25) and its correlation with immune infiltration in pan-cancer. Biomed Res Int, 2022, 2022: 4009354. |
[2] | Kunji ERS. Structural and mechanistic aspects of mitochondrial transport proteins. Comprehensive Biophysics, 2012, 8: 174-205. |
[3] |
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta, 2016, 1863(10): 2362-2378.
doi: 10.1016/j.bbamcr.2016.03.007 pmid: 26968366 |
[4] | Rochette L, Meloux A, Zeller M, Malka G, Cottin Y, Vergely C. Mitochondrial SLC25 carriers: novel targets for cancer therapy. Molecules, 2020, 25(10): 2417. |
[5] |
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab, 2015, 4(5): 406-417.
doi: 10.1016/j.molmet.2015.02.003 pmid: 25973388 |
[6] | Coon SD, Rajendran VM, Schwartz JH, Singh SK. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol, 2015, 308(1): G56-G62. |
[7] | Crocco P, Dato S, Montesanto A, Bonfigli AR, Testa R, Olivieri F, Passarino G, Rose G. The genetic variability of members of the SLC38 family of amino acid transporters (SLC38A3, SLC38A 7and SLC38A9) affects susceptibility to type 2 diabetes and vascular complications. Nutrients, 2022, 14(21): 4440. |
[8] | Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. The SLC25 carrier family: important transport proteins in mitochondrial physiology and pathology. Physiology (Bethesda), 2020, 35(5): 302-327. |
[9] |
Liu Y, Li CX, Fang LL, Wang LY, Liu HC, Tian H, Zheng YJ, Fan T, He J. Lipid metabolism-related lncRNA SLC25A21-AS1 promotes the progression of oesophageal squamous cell carcinoma by regulating the NPM1/c-Myc axis and SLC25A21 expression. Clin Transl Med, 2022, 12(6): e944.
doi: 10.1002/ctm2.944 pmid: 35735113 |
[10] | Moussa S. Oxidative stress in diabetes mellitus. Romanian J Biophys, 2008, 18(3): 225-236. |
[11] | Erejuwa OO. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants? Oxidative Stress and Diseases, 2012, 217-246. |
[12] | Ceriello A. Oxidative stress and diabetes-associated complications. Endocr Pract, 2006, (Suppl 1): 60-62. |
[13] | Calkins MJ, Manczak M, Reddy PH. Mitochondria- targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel), 2012, 5(10): 1103-1119. |
[14] | Pan CG. Role and mechanism of miR-548ab in the development of T2DM [Dissertation]. Shihezi University, 2022. |
潘重阁. miR-548ab在T2DM发生发展过程中的作用及机制研究[学位论文]. 石河子大学, 2022. | |
[15] |
Sherman BT, Hao M, Qiu J, Jiao XL, Baseler MW, Lane HC, Imamichi T, Chang WZ. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022, 50(W1): W216-W221.
doi: 10.1093/nar/gkac194 pmid: 35325185 |
[16] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.
doi: 10.1073/pnas.0506580102 pmid: 16199517 |
[17] |
Huizing M, Iacobazzi V, Ijlst L, Savelkoul P, Ruitenbeek W, van den Heuvel L, Indiveri C, Smeitink J, Trijbels F, Wanders R, Palmieri F. Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient. Am J Hum Genet, 1997, 61(6): 1239-1245.
doi: 10.1086/301628 pmid: 9399886 |
[18] |
Indiveri C, Tonazzi A, Palmieri F. Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim Biophys Acta, 1990, 1020(1): 81-86.
pmid: 2223786 |
[19] |
Aquila H, Link TA, Klingenberg M. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. analysis of sequence homologies and of folding of the protein in the membrane. EMBO J, 1985, 4(9): 2369-2376.
doi: 10.1002/j.1460-2075.1985.tb03941.x pmid: 3000775 |
[20] | Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab, 2007, 293(2): E444- E452. |
[21] | Javed K, Fairweather SJ. Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans, 2019, 47(2): 571-590. |
[22] |
Casimir M, Lasorsa FM, Rubi B, Caille D, Palmieri F, Meda P, Maechler P. Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion. J Biol Chem, 2009, 284(37): 25004-25014.
doi: 10.1074/jbc.M109.015495 pmid: 19584051 |
[23] |
Casimir M, Rubi B, Frigerio F, Chaffard G, Maechler P. Silencing of the mitochondrial NADH shuttle component aspartate-glutamate carrier AGC1/Aralar1 in INS-1E cells and rat islets. Biochem J, 2009, 424(3): 459-466.
doi: 10.1042/BJ20090729 pmid: 19764902 |
[24] | Chen PX, Cao YM, Chen SR, Liu ZK, Chen SY, Guo YL. Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 polymorphisms with metformin efficacy in type 2 diabetic patients. Biomedicines, 2022, 10(10): 2546. |
[25] |
Zhang YH, Xie LT, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang CS, Fidler T, Marthaler B, Klingelhutz A, Abel ED, Samuel I, Smith JK, Cao L, Sah R. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol, 2017, 19(5): 504-517.
doi: 10.1038/ncb3514 pmid: 28436964 |
[26] |
Corbalan-Garcia S, Yang SS, Degenhardt KR, Bar-Sagi D. Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol Cell Biol, 1996, 16(10): 5674-5682.
doi: 10.1128/MCB.16.10.5674 pmid: 8816480 |
[27] |
Xing F, Zhao D, Wu SY, Tyagi A, Wu KR, Sharma S, Liu Y, Deshpande R, Wang YZ, Cleary J, Miller LD, Chittiboyina AG, Yalamanchili C, Mo YY, Watabe K. Epigenetic and posttranscriptional modulation of Sos1 can promote breast cancer metastasis through obesity- activated c-met signaling in african-american women. Cancer Res, 2021, 81(11): 3008-3021.
doi: 10.1158/0008-5472.CAN-19-4031 pmid: 33446575 |
[28] | Baltanás FC, García-Navas R, Santos E. SOS2 comes to the fore: differential functionalities in physiology and pathology. Int J Mol Sci, 2021, 22(12): 6613. |
[29] | Jiang YM, Xu L, Zhu X, Zhu XW, Xu X, Li JB. Hyperglycemic stress induces oxidative damage of enteric glial cells by triggering redoxosomes/p66SHC activation. Redox Rep, 2024, 29(1): 2324234. |
[30] | Powell AM, Edwards NA, Hunter H, Kiser P, Watson AJ, Cumming RC, Betts DH. Deletion of p66Shc dysregulates ERK and STAT3 activity in mouse embryonic stem cells, enhancing their naive-like self-renewal in the presence of leukemia inhibitory factor. Stem Cells Dev, 2023, 32(15-16): 434-449. |
[31] | Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The role of p66shc in diabetes: a comprehensive review from bench to bedside. J Diabetes Res, 2022, 2022: 7703520. |
[32] |
Ameen GI, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol, 2018, 236(1): 29-41.
doi: 10.1530/JOE-17-0359 pmid: 29114012 |
[33] | Gupte A, Mora S. Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem Biophys Res Commun, 2006, 342(3): 751-757. |
[34] | Muthusamy M, Ramani P, Arumugam P. Effect of harvey rat sarcoma virus mutation in oral squamous cell carcinoma and its influence on different populations: a systematic review. Cureus, 2023, 15(9): e45505. |
[35] |
Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005, 87(1): 51-56.
doi: 10.1016/j.biochi.2004.10.018 pmid: 15733737 |
[36] | Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006, 7(12): 885-896. |
[37] | Park JC, Jeong WJ, Seo SH, Choi KY. WDR76 mediates obesity and hepatic steatosis via HRas destabilization. Sci Rep, 2019, 9(1): 19676. |
[38] | Yu WJ, Chen CZ, Peng YX, Li Z, Gao Y, Liang S, Yuan B, Kim NH, Jiang H, Zhang JB. KRAS affects adipogenic differentiation by regulating autophagy and mapk activation in 3T3-L1 and C2C12 cells. Int J Mol Sci, 2021, 22(24): 13630. |
[39] | Harrington M, Pond-Tor S, Boney CM. Role of epidermal growth factor and ErbB2 receptors in 3T3-L1 adipogenesis. Obesity (Silver Spring), 2007, 15(3): 563-571. |
[40] |
Wang T, Wang YX, Yamashita H. Evodiamine inhibits adipogenesis via the EGFR-PKCalpha-ERK signaling pathway. FEBS Lett, 2009, 583(22): 3655-3659.
doi: 10.1016/j.febslet.2009.10.046 pmid: 19854188 |
[41] | Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol, 2011, 3(1 Suppl): S7-S19. |
[42] | Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne), 2018, 9: 503. |
[43] | Park YK, Jang BC. The receptor tyrosine kinase c-met promotes lipid accumulation in 3T3-L1 adipocytes. Int J Mol Sci, 2023, 24(9): 8086. |
[44] | Tang RQ, Ma FF, Li W, Ouyang SR, Liu Z, Wu JX. miR-206-3p inhibits 3T3-L1 cell adipogenesis via the c-Met/PI3K/Akt pathway. Int J Mol Sci, 2017, 18(7): 1510. |
[45] | Visvanathan R, Utsuki T, Beck DE, Clayton WB, Lendy E, Sun KL, Liu YH, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One, 2024, 19(3): e0299541. |
[46] | Hopp SC, Rogers JG, Smith S, Campos G, Miller H, Barannikov S, Kuri EG, Wang H, Han XL, Bieniek KF, Weintraub ST, Palavicini JP. Multi-omics analyses reveal novel effects of PLCγ2 deficiency in the mouse brain. bioRxiv, 2023, 8: 2023.12.06.570499. |
[1] | Yueyang Wu, Xiaoyan Zhou, Yufeng Wu, Ju Huang. Effects of functional defects in the NMD pathway on rice phenotype and transcriptome [J]. Hereditas(Beijing), 2024, 46(7): 540-551. |
[2] | Xin Wen, Jin Mei, Meiyu Qian, Yidan Jiang, Juan Wang, Shibo Xu, Cuizhe Wang, Jun Zhang. Screening and analysis of GULP1 downstream target genes based on transcriptomic sequencing [J]. Hereditas(Beijing), 2024, 46(10): 860-870. |
[3] | Fang Wang, Yuebo Zhang, Qian Jiang, Yulong Yin, Bi’e Tan, Jiashun Chen. Analysis of transcriptome differences between subcutaneous and intramuscular adipose tissue of Ningxiang pigs [J]. Hereditas(Beijing), 2023, 45(12): 1147-1157. |
[4] | Yan Guo, Lele Yang, Huayu Qi. Transcriptome analysis of mouse male germline stem cells reveals characteristics of mature spermatogonial stem cells [J]. Hereditas(Beijing), 2022, 44(7): 591-608. |
[5] | Shanshan Wang, Wanyi Zhao, Huixiao Wu, Meng Shu, Jiaxin Yuan, Li Fang, Chao Xu. Research on the variants of FGFR1 and CEP290 genes in idiopathic hypogonadotropin hypogonadism [J]. Hereditas(Beijing), 2022, 44(10): 937-949. |
[6] | Hong Xiang, Xiaohu Yang, Liangxia Ai, Yanping Pan, Yong Hu. Bioinformatics analysis of differentially expressed genes on alopecia [J]. Hereditas(Beijing), 2020, 42(2): 172-182. |
[7] | Hongqiang Lyu, Lele Hao, Erhu Liu, Zhifang Wu, Jiuqiang Han, Yuan Liu. Current status and future perspectives in bioinformatical analysis of Hi-C data [J]. Hereditas(Beijing), 2020, 42(1): 87-99. |
[8] | Chao He,Wenlong Shen,Ping Li,Yan Zhang,Jing Zeng,Zuoming Yin,Zhihu Zhao. Bioinformatics analysis of Alu components at the level of genome 3D structure [J]. Hereditas(Beijing), 2019, 41(3): 254-261. |
[9] | Jiahui Chen, Xueyi Ren, min Li, Shiyi Lu, Tian Cheng, Liangtian Tan, Shaodong Liang, Danlin He, Qingbin Luo, Qinghua Nie, Xiquan Zhang, Wen Luo. The cell cycle pathway regulates chicken abdominal fat deposition as revealed by transcriptome sequencing [J]. Hereditas(Beijing), 2019, 41(10): 962-973. |
[10] | Yuansheng Zhang,Lin Xia,Jian Sang,Man Li,Lin Liu,Mengwei Li,Guangyi Niu,Jiabao Cao,Xufei Teng,Qing Zhou,Zhang Zhang. The BIG Data Center’s database resources [J]. Hereditas(Beijing), 2018, 40(11): 1039-1043. |
[11] | Xiaohua Xiang, Xinru Wu, Jiangtao Chao, Minglei Yang, Fan Yang, Guo Chen, Guanshan Liu, Yuanying Wang. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.) [J]. Hereditas(Beijing), 2016, 38(9): 840-856. |
[12] | Xiaoxu Li, Cheng Liu, Wei Li, Zenglin Zhang, Xiaoming Gao, Hui Zhou, Yongfeng Guo. Genome-wide identification, phylogenetic analysis and expression profiling of the WOX family genes in Solanum lycopersicum [J]. HEREDITAS(Beijing), 2016, 38(5): 444-460. |
[13] | Xue Zhou, Yilan Du, Ping Jin, Fei Ma. Bioinformatic analysis of cancer-related microRNAs and their target genes [J]. HEREDITAS(Beijing), 2015, 37(9): 855-864. |
[14] | Xiang Fang, Ningqiu Li, Xiaozhe Fu, Kaibin Li, Qiang Lin, Lihui Liu, Cunbin Shi, Shuqin Wu. Construction and application of bioinformatic analysis platform for aquatic pathogen based on the MilkyWay-2 supercomputer [J]. HEREDITAS(Beijing), 2015, 37(7): 702-710. |
[15] | Hongmei Qiu, Wenyuan Hao, Shuqin Gao, Xiaoping Ma, Yuhong Zheng, Fanfan Meng, Xuhong Fan, Yang Wang, Yueqiang Wang, Shuming Wang. Gene mining of sulfur-containing amino acid metabolic enzymes in soybean [J]. HEREDITAS(Beijing), 2014, 36(9): 934-942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号