Hereditas(Beijing) ›› 2025, Vol. 47 ›› Issue (8): 944-957.doi: 10.16288/j.yczz.25-030
• Review • Previous Articles
Mengwei Guo(), Youhong Fan(
), Guodong Ren(
)
Received:
2025-01-26
Revised:
2025-04-30
Online:
2025-08-20
Published:
2025-05-07
Contact:
Guodong Ren
E-mail:20110700093@fudan.edu.cn;fanyouhong@fudan.edu.cn;gdren@fudan.edu.cn
Supported by:
Mengwei Guo, Youhong Fan, Guodong Ren. Molecular basis of microRNA stability and degradation in plants[J]. Hereditas(Beijing), 2025, 47(8): 944-957.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Tian W, Chen T, Liu QY, Zhang BS, Guo HS, Zhao JH. Advances in the mechanisms and applications of RNA silencing in crop protection. Hereditas(Beijing), 2024, 46(4): 266-278. |
田文, 谌婷, 刘清艳, 张博森, 郭惠珊, 赵建华. 植物RNA沉默抗病机制与应用研究进展. 遗传, 2024, 46(4): 266-278. | |
[2] |
Wang JL, Mei J, Ren GD. Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci, 2019, 10: 360.
pmid: 30972093 |
[3] |
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol, 2013, 64: 137-159.
pmid: 23330790 |
[4] |
Kim VN, Han JJ, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139.
pmid: 19165215 |
[5] |
Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell, 2011, 23(2): 431-442.
pmid: 21317375 |
[6] |
Rogers K, Chen XM. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25(7): 2383-2399.
pmid: 23881412 |
[7] |
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Gene Dev, 2006, 20(24): 3407-3425.
pmid: 17182867 |
[8] |
Yang ZY, Ebright YW, Yu B, Chen XM. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res, 2006, 34(2): 667-675.
pmid: 16449203 |
[9] |
Yu B, Yang ZY, Li JJ, Minakhina S, Yang MC, Padgett RW, Steward R, Chen XM. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932-935.
pmid: 15705854 |
[10] |
Iki T, Yoshikawa M, Meshi T, Ishikawa M. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J, 2012, 31(2): 267-278.
pmid: 22045333 |
[11] |
Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell, 2018, 69(4): 709-719.e5.
pmid: 29398448 |
[12] |
Bartel DP. Metazoan microRNAs. Cell, 2018, 173(1): 20-51.
pmid: 29570994 |
[13] |
Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends Plant Sci, 2008, 13(7): 343-349.
pmid: 18502167 |
[14] |
Creasey KM, Zhai JX, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA. MiRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 2014, 508(7496): 411-415.
pmid: 24670663 |
[15] |
Xue Y, Cao XF, Chen XS, Deng X, Deng XW, Ding Y, Dong AW, Duan CG, Fang XF, Gong L, Gong ZZ, Gu XF, He CS, He H, He SB, He XJ, He Y, He YH, Jia GF, Jiang DH, Jiang JJ, Lai JS, Lang ZB, Li CL, Li Q, Li XW, Liu B, Liu B, Luo X, Qi YJ, Qian WQ, Ren GD, Song QX, Song XW, Tian ZX, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan WH, Yang HC, Zhai JX, Zhang YJ, Zhao YS, Zhong XH, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu QK. Epigenetics in the modern era of crop improvements. Sci China Life Sci, 2025, doi: 10.1007/s11427-024-2784-3.
pmid: 39808224 |
[16] |
Song XW, Li Y, Cao XF, Qi YJ. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70: 489-525.
pmid: 30848930 |
[17] | Xu J, Hou N, Han N, Bian HW, Zhu MY. The regulatory roles of small RNAs in phytohormone signaling pathways. Hereditas(Beijing), 2016, 38(5): 418-426. |
许佳, 侯宁, 韩凝, 边红武, 朱睦元. 小分子RNA在植物激素信号通路中的调控功能. 遗传, 2016, 38(5): 418-426. | |
[18] |
Park W, Li JJ, Song RT, Messing J, Chen XM. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002, 12(17): 1484-1495.
pmid: 12225663 |
[19] |
Li SJ, Castillo-González C, Yu B, Zhang XR. The functions of plant small RNAs in development and in stress responses. Plant J, 2017, 90(4): 654-670.
pmid: 27943457 |
[20] |
Chen XM, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol, 2022, 23(3): 185-203.
pmid: 34707241 |
[21] |
Xu Y, Chen XM. MicroRNA biogenesis and stabilization in plants. Fundam Res, 2023, 3(5): 707-717.
pmid: 38933298 |
[22] |
Fang XF, Qi YJ. RNAi in plants: An Argonaute-centered view. Plant Cell, 2016, 28(2): 272-285.
pmid: 26869699 |
[23] |
Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14(7): 447-459.
pmid: 23732335 |
[24] |
Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet, 2011, 12(1): 19-31.
pmid: 21116305 |
[25] |
Mi SJ, Cai T, Hu YG, Chen YM, Hodges E, Ni FR, Wu L, Li S, Zhou HY, Long CZ, Chen S, Hannon GJ, Qi YJ. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 2008, 133(1): 116-127.
pmid: 18342361 |
[26] |
Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature, 2010, 465(7299): 818-822.
pmid: 20505670 |
[27] |
Schwarz DS, Hutvágner G, Du TT, Xu ZS, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115(2): 199-208.
pmid: 14567917 |
[28] |
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115(2): 209-216.
pmid: 14567918 |
[29] |
Vaucheret H, Vazquez F, CrétéP, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev, 2004, 18(10): 1187-1197.
pmid: 15131082 |
[30] |
Giudicatti AJ, Tomassi AH, Manavella PA, Arce AL. Extensive analysis of miRNA trimming and tailing indicates that AGO1 has a complex role in miRNA turnover. Plants (Basel), 2021, 10(2): 267.
pmid: 33573197 |
[31] |
Li SB, Le B, Ma X, Li SF, You CJ, Yu Y, Zhang BL, Liu L, Gao L, Shi T, Zhao YH, Mo BX, Cao XF, Chen XM. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife, 2016, 5: e22750.
pmid: 27938667 |
[32] |
Zhai JX, Zhao YY, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji LJ, Xie M, Cao XF, Yu B, Timmermans M, Yang B, Chen XM, Meyers BC. Plant microRNAs display differential 3′ truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. Plant Cell, 2013, 25(7): 2417-2428.
pmid: 23839787 |
[33] |
Montgomery TA, Howell MD, Cuperus JT, Li DW, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC. Specificity of ARGONAUTE7- miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell, 2008, 133(1): 128-141.
pmid: 18342362 |
[34] |
Li J, Wang Z, Hu YG, Cao Y, Ma LG. Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in Arabidopsis. Front Plant Sci, 2017, 8: 867.
pmid: 28596781 |
[35] |
Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell, 2012, 24(9): 3575-3589.
pmid: 23001036 |
[36] |
Ji LJ, Liu XG, Yan J, Wang WM, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng BL, Agarwal M, Liu CY, Cao XF, Tang GL, Chen XM. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet, 2011, 7(3): e1001358.
pmid: 21483759 |
[37] |
Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell, 2011, 145(2): 242-256.
pmid: 21496644 |
[38] |
Yu Y, Ji LJ, Le BH, Zhai JX, Chen JY, Luscher E, Gao L, Liu CY, Cao XF, Mo BX, Ma JB, Meyers BC, Chen XM. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol, 2017, 15(2): e2001272.
pmid: 28231321 |
[39] | Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol, 2011, 21(5): 369-376. [DOI] |
[40] |
Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, Isono E, Schumacher K, Genschik P. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci USA, 2012, 109(39): 15942-15946.
pmid: 23019378 |
[41] |
Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, Dubois M, Hacquard T, Derrien B, Izquierdo E, Lecorbeiller M, Bouteiller N, De Cilia J, Ziegler-Graff V, Vaucheret H, Galili G, Genschik P. The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc Natl Acad Sci USA, 2019, 116(45): 22872-22883.
pmid: 31628252 |
[42] |
Earley K, Smith M, Weber R, Gregory B, Poethig R. An endogenous F-box protein regulates ARGONAUTE1 in Arabidopsis thaliana. Silence, 2010, 1(1): 15.
pmid: 20624295 |
[43] |
Hacquard T, Clavel M, Baldrich P, Lechner E, Pérez-Salamó I, Schepetilnikov M, Derrien B, Dubois M, Hammann P, Kuhn L, Brun D, Bouteiller N, Baumberger N, Vaucheret H, Meyers BC, Genschik P. The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of illegitimate small RNA. Cell Rep, 2022, 39(2): 110671.
pmid: 35417704 |
[44] |
Ré DA, Cambiagno DA, Arce AL, Tomassi AH, Giustozzi M, Casati P, Ariel FD, Manavella PA. CURLY LEAF regulates microRNA activity by controlling ARGONAUTE 1 degradation in plants. Mol Plant, 2020, 13(1): 72-87.
pmid: 31606467 |
[45] |
Chen XM, Liu J, Cheng YL, Jia DX. HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development, 2002, 129(5): 1085-1094.
pmid: 11874905 |
[46] |
Huang Y, Ji LJ, Huang QC, Vassylyev DG, Chen XM, Ma JB. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature, 2009, 461(7265): 823-827.
pmid: 19812675 |
[47] |
Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J. WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol, 2010, 154(3): 1335-1346.
pmid: 20805329 |
[48] |
Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 2013, 14(8): 475-488.
pmid: 23800994 |
[49] |
Ren GD, Chen XM, Yu B. Small RNAs meet their targets: when methylation defends miRNAs from uridylation. RNA Biol, 2014, 11(9): 1099-1104.
pmid: 25483033 |
[50] |
Li JJ, Yang ZY, Yu B, Liu J, Chen XM. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15(16): 1501-1507.
pmid: 16111943 |
[51] |
Ren GD, Chen XM, Yu B. Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol, 2012, 22(8): 695-700.
pmid: 22464191 |
[52] |
Tu B, Liu L, Xu C, Zhai JX, Li SB, Lopez MA, Zhao YY, Yu Y, Ramachandran V, Ren GD, Yu B, Li SG, Meyers BC, Mo BX, Chen XM. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet, 2015, 11(4): e1005119.
pmid: 25928405 |
[53] |
Zhao YY, Yu Y, Zhai JX, Ramachandran V, Dinh TT, Meyers BC, Mo BX, Chen XM. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr Biol, 2012, 22(8): 689-694.
pmid: 22464194 |
[54] |
Wang XY, Zhang SX, Dou YC, Zhang C, Chen XM, Yu B, Ren GD. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis. PLoS Genet, 2015, 11(4): e1005091.
pmid: 25928341 |
[55] |
Hu Q, Yang HR, Li MW, Zhu LR, Lv MQ, Li FD, Zhang ZY, Ren GD, Gong QG. Molecular mechanism underlying the di-uridylation activity of Arabidopsis TUTase URT1. Nucleic Acids Res, 2022, 50(18): 10614-10625.
pmid: 36177876 |
[56] |
Ren GD, Xie M, Zhang SX, Vinovskis C, Chen XM, Yu B. Methylation protects microRNAs from an AGO1- associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA, 2014, 111(17): 6365-6370.
pmid: 24733911 |
[57] |
Chen SS, Cai YC, Yang HR, Zhang B, Li N, Ren GD. PBOX-sRNA-seq uncovers novel features of miRNA modification and identifies selected 5′-tRNA fragments bearing 2′-O-modification. Nucleic Acids Res, 2024, 52(14): e65.
pmid: 38908023 |
[58] |
Song JB, Wang XY, Song B, Gao L, Mo XW, Yue LM, Yang HQ, Lu JY, Ren GD, Mo BX, Chen XM. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. Nat Plants, 2019, 5(12): 1260-1272.
pmid: 31792392 |
[59] |
Kong WW, Dong XX, Ren YB, Wang Y, Xu XT, Mo BX, Yu Y, Wang XY. NTP4 modulates miRNA accumulation via asymmetric modification of miRNA/miRNA* duplex. Sci China Life Sci, 2021, 64(5): 832-835.
pmid: 32915408 |
[60] |
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cerutti H. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci USA, 2010, 107(8): 3906-3911.
pmid: 20142471 |
[61] |
Lu SF, Sun YH, Chiang VL. Adenylation of plant miRNAs. Nucleic Acids Res, 2009, 37(6): 1878-1885.
pmid: 19188256 |
[62] |
Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci, 2023, 48(1): 26-39.
pmid: 35811249 |
[63] |
Yu S, Kim VN. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol, 2020, 21(9): 542-556.
pmid: 32483315 |
[64] |
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu SN, Ivanov AR, Wolf DA, Mizgerd JP. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol, 2009, 11(9): 1157-1163.
pmid: 19701194 |
[65] |
Yang A, Bofill-De Ros X, Shao TJ, Jiang MJ, Li K, Villanueva P, Dai LS, Gu S. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol Cell, 2019, 75(3): 511-522.e4.
pmid: 31178353 |
[66] |
Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA, 2005, 102(33): 11928-11933.
pmid: 16081530 |
[67] |
Li SB, Liu L, Zhuang XH, Yu Y, Liu XG, Cui X, Ji LJ, Pan ZQ, Cao XF, Mo BX, Zhang FC, Raikhel N, Jiang LW, Chen XM. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell, 2013, 153(3): 562-574.
pmid: 23622241 |
[68] |
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185-1190.
pmid: 18483398 |
[69] |
Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025.
pmid: 12893888 |
[70] |
Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang SN, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. Structural basis for target-directed microRNA degradation. Mol Cell, 2019, 75(6): 1243-1255.e7.
pmid: 31353209 |
[71] |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
pmid: 19167326 |
[72] |
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng ZP, Zamore PD. Target RNA-directed trimming and tailing of small silencing RNAs. Science, 2010, 328(5985): 1534-1539.
pmid: 20558712 |
[73] |
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39(8): 1033-1037.
pmid: 17643101 |
[74] |
Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet, 2010, 6(7): e1001031.
pmid: 20661442 |
[75] |
Yan J, Gu YY, Jia XY, Kang WJ, Pan SJ, Tang XQ, Chen XM, Tang GL. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell, 2012, 24(2): 415-427.
pmid: 22345490 |
[76] |
Reichel M, Li YJ, Li JY, Millar AA. Inhibiting plant microRNA activity: molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J, 2015, 13(7): 915-926.
pmid: 25600074 |
[77] |
Peng T, Qiao MM, Liu HP, Teotia S, Zhang ZH, Zhao YF, Wang BB, Zhao DJ, Shi LN, Zhang C, Le B, Rogers K, Gunasekara C, Duan HT, Gu YY, Tian L, Nie JF, Qi J, Meng FR, Huang L, Chen QH, Wang ZL, Tang JS, Tang XQ, Lan T, Chen XM, Wei HR, Zhao QZ, Tang GL. A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants. Mol Plant, 2018, 11(11): 1400-1417.
pmid: 30243763 |
[78] |
Li FF, Wang WD, Zhao N, Xiao BG, Cao PJ, Wu XF, Ye CY, Shen EH, Qiu J, Zhu QH, Xie JH, Zhou XP, Fan LJ. Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. Plant Physiol, 2015, 169(2): 1062-1071.
pmid: 26246450 |
[79] |
Du QG, Wang K, Zou C, Xu C, Li WX. The PILNCR1- miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol, 2018, 177(4): 1743-1753.
pmid: 29967097 |
[80] |
Wang XB, Yan LX, Li TH, Zhang J, Zhang YJ, Zhang JJ, Lian XD, Zhang HP, Zheng XB, Hou N, Cheng J, Wang W, Zhang LL, Ye X, Li JD, Feng JC, Tan B. The lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branch number by affecting brassinosteroid biosynthesis. New Phytol, 2024, 243(3): 1050-1064.
pmid: 38872462 |
[81] |
Guo AH, Nie HS, Li HJ, Li B, Cheng C, Jiang KY, Zhu SW, Zhao N, Hua JP. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. J Integr Plant Biol, 2025, 67(1): 169-190.
pmid: 39526576 |
[82] |
Wu HJ, Wang ZM, Wang M, Wang XJ. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol, 2013, 161(4): 1875-1884.
pmid: 23429259 |
[83] |
Ivashuta S, Banks IR, Wiggins BE, Zhang YJ, Ziegler TE, Roberts JK, Heck GR. Regulation of gene expression in plants through miRNA inactivation. PLoS One, 2011, 6(6): e21330.
pmid: 21731706 |
[84] |
Ma X, Liu CY, Gu LF, Mo BX, Cao XF, Chen XM. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. Bioinformatics, 2018, 34(9): 1574-1576.
pmid: 29236948 |
[85] |
Lang PLM, Christie MD, Dogan ES, Schwab R, Hagmann J, van de Weyer AL, Scacchi E, Weigel D. A role for the F-box protein HAWAIIAN SKIRT in plant microRNA function. Plant Physiol, 2018, 176(1): 730-741.
pmid: 29114080 |
[86] |
Mei J, Jiang N, Ren GD. The F-box protein HAWAIIAN SKIRT is required for mimicry target-induced microRNA degradation in Arabidopsis. J Integr Plant Biol, 2019, 61(11): 1121-1127.
pmid: 30565372 |
[87] |
Zhang XB, Jayaweera D, Peters JL, Szecsi J, Bendahmane M, Roberts JA, González-Carranza ZH. The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One, 2017, 12(12): e0189788.
pmid: 29244865 |
[88] |
Damayanti F, Lombardo F, Masuda JI, Shinozaki Y, Ichino T, Hoshikawa K, Okabe Y, Wang N, Fukuda N, Ariizumi T, Ezura H. Functional disruption of the tomato putative ortholog of HAWAIIAN SKIRT results in facultative parthenocarpy, reduced fertility and leaf morphological defects. Front Plant Sci, 2019, 10: 1234.
pmid: 31681360 |
[89] |
Borna RS, Murchie EH, Pyke KA, Roberts JA, Gonzalez-Carranza ZH. The rice EP3 and OsFBK1 E3 ligases alter plant architecture and flower development, and affect transcript accumulation of microRNA pathway genes and their targets. Plant Biotechnol J, 2022, 20(2): 297-309.
pmid: 34543503 |
[90] |
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3): 353-358.
pmid: 21802130 |
[91] |
de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Grosshans H. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep, 2015, 16(4): 500-511.
pmid: 25724380 |
[92] |
Pawlica P, Sheu-Gruttadauria J, MacRae IJ, Steitz JA. How complementary targets expose the microRNA 3' end for tailing and trimming during target-directed microRNA degradation. Cold Spring Harb Symp Quant Biol, 2019, 84: 179-183.
pmid: 32019864 |
[93] |
Han J, LaVigne CA, Jones BT, Zhang H, Gillett F, Mendell JT. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science, 2020, 370(6523): eabc9546.
pmid: 33184234 |
[94] |
Shi CY, Kingston ER, Kleaveland B, Lin DH, Stubna MW, Bartel DP. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science, 2020, 370(6523): eabc9359.
pmid: 33184237 |
[95] |
Liu QK, Wang F, Axtell MJ. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell, 2014, 26(2): 741-753.
pmid: 24510721 |
[96] |
Park JH, Shin SY, Shin C. Non-canonical targets destabilize microRNAs in human Argonautes. Nucleic Acids Res, 2017, 45(4): 1569-1583.
pmid: 28119422 |
[97] |
Chatterjee S, Grosshans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature, 2009, 461(7263): 546-549.
pmid: 19734881 |
[98] |
Ramachandran V, Chen XM. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science, 2008, 321(5895): 1490-1492.
pmid: 18787168 |
[99] |
Wang XY, Wang Y, Dou YC, Chen L, Wang JL, Jiang N, Guo CC, Yao QQ, Wang CZ, Liu L, Yu B, Zheng BL, Chekanova JA, Ma JB, Ren GD. Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis. Proc Natl Acad Sci USA, 2018, 115(28): E6659-E6667.
pmid: 29941559 |
[100] |
Zhang WP, Murphy C, Sieburth LE. Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci USA, 2010, 107(36): 15981-15985.
pmid: 20798041 |
[101] |
Gy I, Gasciolli V, Lauressergues D, Morel JB, Gombert J, Proux F, Proux C, Vaucheret H, Mallory AC. Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell, 2007, 19(11): 3451-3461.
pmid: 17993620 |
[102] |
Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R. A link between mRNA turnover and RNA interference in Arabidopsis. Science, 2004, 306(5698): 1046-1048.
pmid: 15528448 |
[103] |
Souret FF, Kastenmayer JP, Green PJ. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell, 2004, 15(2): 173-183.
pmid: 15260969 |
[104] |
Liu Y, Gao WR, Wu SY, Lu L, Chen YQ, Guo JL, Men SZ, Zhang XM. AtXRN4 affects the turnover of chosen miRNA*s in Arabidopsis. Plants (Basel), 2020, 9(3): 362.
pmid: 32182993 |
[105] |
Elbarbary RA, Miyoshi K, Myers JR, Du PC, Ashton JM, Tian B, Maquat LE. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G1/S phase transition. Science, 2017, 356(6340): 859-862.
pmid: 28546213 |
[106] |
Hu P, Zhao HW, Zhu P, Xiao YS, Miao WL, Wang YS, Jin HL. Dual regulation of Arabidopsis AGO2 by arginine methylation. Nat Commun, 2019, 10(1): 844.
pmid: 30783097 |
[107] |
Barre-Villeneuve C, Laudié M, Carpentier MC, Kuhn L, Lagrange T, Azevedo-Favory J. The unique dual targeting of AGO1 by two types of PRMT enzymes promotes phasiRNA loading in Arabidopsis thaliana. Nucleic Acids Res, 2024, 52(5): 2480-2497.
pmid: 38321923 |
[108] |
Maji RK, Leisegang MS, Boon RA, Schulz MH. Revealing microRNA regulation in single cells. Trends Genet, 2025, S0168- 9525(24)00317-2.
pmid: 39863489 |
[109] |
Alberti C, Manzenreither RA, Sowemimo I, Burkard TR, Wang JK, Mahofsky K, Ameres SL, Cochella L. Cell- type specific sequencing of microRNAs from complex animal tissues. Nat Methods, 2018, 15(4): 283-289.
pmid: 29481550 |
[1] | Huaihao Yang, Binglian Zheng. Biogenesis, action, function of plant small RNAs and their potential application in agriculture [J]. Hereditas(Beijing), 2025, 47(8): 928-943. |
[2] | Deyu Xu, Xi Zhou, Yujie Ren. RNAi-based antiviral immunity [J]. Hereditas(Beijing), 2025, 47(8): 876-884. |
[3] | Xiao Zhang, Yan Yu, Yong Ning, Qiwen Hong, Huaiping Shi. Advances in microRNA promoting gene expression [J]. Hereditas(Beijing), 2025, 47(7): 729-741. |
[4] | Sainan An, Huanchun Yang, Shan Jiang, Jingxuan Li, Genfa Zhang. Design and exploration of integrating bioinformatic analysis into comprehensive and exploratory epigenetic experiments [J]. Hereditas(Beijing), 2025, 47(5): 600-608. |
[5] | Lufeng Dan, Yiwen Chu, Xinrong Wang, Xiangwei He. Screening and application of unstable genetically resistant strains in fission yeast [J]. Hereditas(Beijing), 2025, 47(5): 589-599. |
[6] | Zhang Yiwen, Huang Qin, Wu Yanyun, Sun Yue, Wei Yonglong. Progress on the role of LIN28A/B in tumor development and progression [J]. Hereditas(Beijing), 2024, 46(6): 452-465. |
[7] | Ao Zhang, Shan Cen, Xiaoyu Li. N6-adenosine methylation and the regulatory mechanism on LINE-1 [J]. Hereditas(Beijing), 2024, 46(3): 209-218. |
[8] | Yanni Wang, Jia Li. Processing pipelines and analytical methods for single-cell DNA methylation sequencing data [J]. Hereditas(Beijing), 2024, 46(10): 807-819. |
[9] | Yu Liang, Wei Wu. Advances in high throughput sequencing methods for DNA damage and repair [J]. Hereditas(Beijing), 2024, 46(10): 779-794. |
[10] | Shan He, Jian Zhao, Xiaofeng Song. Effects of N6-methyladenosine modification on the function of the female reproductive system [J]. Hereditas(Beijing), 2023, 45(6): 472-487. |
[11] | Penghui Song, Lijuan Ma, Dong Yan. Exon junction complex modulates the formation of the m6A epitranscriptome [J]. Hereditas(Beijing), 2023, 45(6): 464-471. |
[12] | Jiahao Wang, Qingyao Zhao, Yueling Zhou, Liangyu Shi, Chuduan Wang, Ying Yu. Application and prospect of gene chip in genetic breeding of livestock and poultry [J]. Hereditas(Beijing), 2023, 45(12): 1114-1127. |
[13] | Wenzhen Du, Yuanjing Li, Jialing Wu, Siyu Chen, Liang Jiang, Gang Liu, Ning Xie. Identification and functional study of AA11 family polysaccharide monooxygenase genes in filamentous fungus Podospora anserina [J]. Hereditas(Beijing), 2023, 45(12): 1128-1146. |
[14] | Mengxuan Xu, Ming Zhou. Advances of RNA polymerase IV in controlling DNA methylation and development in plants [J]. Hereditas(Beijing), 2022, 44(7): 567-580. |
[15] | Juan Wang, Yuening Yang, Weilan Piao, Hua Jin. Uridylation: a vital way for cellular RNA surveillance [J]. Hereditas(Beijing), 2022, 44(6): 449-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号