| [1] | Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta, 2016, doi: 10.1016/j.placenta. 2016.12.026. | | [2] | Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science, 1999, 286(5439): 481-486. | | [3] | Novakovic B, Saffery R. The ever growing complexity of placental epigenetics-role in adverse pregnancy outcomes and fetal programming. Placenta, 2012, 33(12): 959-970. | | [4] | Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093. | | [5] | Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaker JC, Loughna P, Stanier P, Moore GE. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med, 2007, 85(4): 379-387. | | [6] | Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: A meta-analysis. Obstet Gynecol, 2004, 103(3): 551-563. | | [7] | Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur JG, Chen J. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics, 2009, 4(4): 235-240. | | [8] | Chandrasekharan MB, Huang F, Chen YC, Sun ZW. Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol, 2010, 30(13): 3216-3232. | | [9] | Holt MT, David Y, Pollock S, Tang ZY, Jeon J, Kim J, Roeder RG, Muir TW. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci USA, 2015, 112(33): 10365-10370. | | [10] | Bird A. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-21. | | [11] | Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen TP, Li E, Jenuwein T, Peters AHFM. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol, 2003, 13(14): 1192-1200. | | [12] | Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 2007, 445(7124): 214-218. | | [13] | Niessen HEC, Demmers JA, Voncken JW. Talking to chromatin: post-translational modulation of polycomb group function. Epigenetics Chromatin, 2009, 2: 10. | | [14] | Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod, 2007, 13(4): 273-279. | | [15] | Terranova R, Yokobayashi S, Stadler MB, Otte |
| [1] |
安赛男, 杨欢淳, 姜姗, 李靖轩, 张根发. 融入生物信息学分析的综合性探究型表观遗传学实验设计与探索[J]. 遗传, 2025, 47(5): 600-608. |
| [2] |
刘岱缘, 张朝晖, 康现江. 精子染色质完整性对功能的影响及其检测方法研究进展[J]. 遗传, 2024, 46(7): 511-529. |
| [3] |
沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
| [4] |
孙朝冉, 吴旭东. 组蛋白变体H2A.Z的转录调控功能与动态作用机制[J]. 遗传, 2024, 46(4): 279-289. |
| [5] |
王艳妮, 李佳. 单细胞DNA甲基化测序数据处理流程与分析方法[J]. 遗传, 2024, 46(10): 807-819. |
| [6] |
欧秀芳, 吴莹, 李宁, 姜丽丽, 刘宝, 宫磊. 基于科教融合培养大学生拔尖创新能力的表观遗传学综合实验课程[J]. 遗传, 2023, 45(12): 1158-1168. |
| [7] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
| [8] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
| [9] |
张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
| [10] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
| [11] |
何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
| [12] |
王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
| [13] |
袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
| [14] |
王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
| [15] |
张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
|