[1] Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J . Nat Genet , 2005, 37(9): 934-935. [2] Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, Batish SD, Kalb R, Velleuer E, Barral S, Ott J, Petrini J, Schindler D, Hanenberg H, Auerbach AD. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet , 2005, 37(9): 931-933. [3] Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreassen PR, Cantor SB. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell , 2005, 8(3): 255-265. [4] Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell , 2001, 105(1): 149-160. [5] Cantor SB, Drapkin R, Zhang F, Lin YF, Han J, Pamidi S, Livingston DM. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA , 2004, 101(8): 2357-2362. [6] Gupta R, Sharma S, Sommers JA, Jin Z, Cantor SB, Brosh RM Jr. Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem , 2005, 280(27): 25450-25460. [7] Kumaraswamy E, Shiekhattar R. Activation of BRCA1/ BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol , 2007, 27(19): 6733-6741. [8] Wu YL, Shin-ya K, Brosh R M Jr. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol , 2008, 28(12): 4116-4128. [9] Bridge WL, Vandenberg CJ, Franklin RJ, Hiom K. The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet , 2005, 37(9): 953-957. [10] Cheung I, Schertzer M, Rose A, Lansdorp PM. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet , 2002, 31(4): 405-409. [11] Friedberg EC, Bardwell AJ, Bardwell L, Feaver WJ, Kornberg RD, Svejstrup JQ, Tomkinson AE, Wang ZG. Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription. Philos Trans R Soc Lond B Biol Sci , 1995, 347(1319): 63-68. [12] Hoeijmakers JH, Egly JM, Vermeulen W. TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev , 1996, 6(1): 26-33. [13] Lehmann AR. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev , 2001, 15(1): 15-23. [14] Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, Cooper PK, Tainer JA. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell , 2008, 133(5): 789-800. [15] Liu HT, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie AM, Brown SE, Naismith JH, White MF. Structure of the DNA repair helicase XPD. Cell , 2008, 133(5): 801-812. [16] Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol , 2008, 6(6): e149. [17] Skibbens RV. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics , 2004, 166(1): 33-42. [18] Vasa-Nicotera M, Brouilette S, Mangino M, Thompson JR, Braund P, Clemitson JR, Mason A, Bodycote CL, Raleigh SM, Louis E, Samani NJ. Mapping of a major locus that determines telomere length in humans. Am J Hum Genet , 2005, 76(1): 147-151. [19] Inoue A, Li T, Roby SK, Valentine MB, Inoue M, Boyd K, Kidd VJ, Lahti JM. Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle , 2007, 6(13): 1646-1654. [20] Ding H, Schertzer M, Wu XL, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PPL, Nagy A, Lansdorp PM. Regulation of murine telomere length by Rtel : an essential gene encoding a helicase-like protein. Cell , 2004, 117(7): 873-886. [21] Wu XL, Sandhu S, Ding H. Establishment of conditional knockout alleles for the gene encoding the regulator of telomere length (RTEL). Genesis , 2007, 45(12): 788-792. [22] Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MIR, Martin JS, Collis SJ, Cantor SB, Auclair M, Tissenbaum H, West SC, Rose AM, Boulton SJ. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell , 2008, 135(2): 261-271. [23] Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. The Pfam protein families database. Nucleic Acids Res , 2012, 40(Database issue): D290-D301. [24] Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol , 2013, 30(4): 772-780. [25] Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol , 2010, 59(3): 307-321. [26] Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics , 2011, 27(8): 1164-1165. [27] Bailey TL, Williams N, Misleh C and Li W W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res , 2006, 34(Web Server issue): W369- W373. [28] Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS- MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics , 2006, 22(2): 195-201. [29] Frickey T, Lupas A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics , 2004, 20(18): 3702-3704. [30] Berbee ML, Taylor JW. Dating the evolutionary radiations of the true fungi. Can J Bot , 1993, 71(8): 1114-1127. [31] Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol , 2012, 57: 449-468. [32] Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol , 2010, 20(3): 313-324. [33] White M F. Structure, function and evolution of the XPD family of iron-sulfur-containing 5′→3′ DNA helicases. Biochem Soc Trans , 2009, 37(Pt 3): 547-551. |