遗传 ›› 2015, Vol. 37 ›› Issue (4): 344-359.doi: 10.16288/j.yczz.14-432
黄小庆,李丹丹,吴娟
收稿日期:
2014-12-04
出版日期:
2015-04-20
发布日期:
2015-03-03
通讯作者:
吴娟,博士,副教授,研究方向:植物生理学和RNA分子生物学。E-mail: wuj1970@163.com
E-mail:huangxiaoqing85@163.com
作者简介:
黄小庆,硕士研究生,专业方向:生物化学与分子生物学。E-mail: huangxiaoqing85@163.com
基金资助:
Xiaoqing Huang,Dandan Li,Juan Wu
Received:
2014-12-04
Online:
2015-04-20
Published:
2015-03-03
摘要: 长链非编码RNA(Long non-coding RNA,lncRNA)长度大于200个核苷酸,大量存在于生物体中并具有多种生物学功能。目前,植物中发现的lncRNA大多由RNA聚合酶Ⅱ转录,并通过目标模仿、转录干扰、组蛋白甲基化和DNA甲基化等多种机制介导基因的表达,在植物开花、雄性不育、营养代谢、生物和非生物胁迫等生物过程中起着调节因子的作用。文章综述了近年来发现的植物lncRNA数据库、预测方法、表达及可能的生物学功能。
黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359.
Xiaoqing Huang,Dandan Li,Juan Wu. Long non-coding RNAs in plants[J]. HEREDITAS(Beijing), 2015, 37(4): 344-359.
[1] Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet , 2001, 2(12): 919-929. [2] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell , 2009, 136(4): 629-641. [3] Stoughton RB. Applications of DNA microarrays in biology. Annu Rev Biochem , 2005, 74: 53-82. [4] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell , 2009, 136(4): 642-655. [5] Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell , 2009, 136(4): 656-668. [6] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet , 2009, 10(3): 155-159. [7] Ben Amor B, Wirth S, Merchan F, Laporte P, d'Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res , 2009, 19(1): 57-69. [8] Zhang J, Mujahid H, Hou YX, Nallamilli BR, Peng ZH. Plant long ncRNAs: a new frontier for gene regulatory control. American J Plant Sci , 2013, 4: 1038-1045. [9] Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science , 2007, 316(5830): 1484- 1488. [10] Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev , 2007, 21(1): 11-42. [11] Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science , 2008, 319(5871): 1787-1789. [12] Cao XW, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci , 2006, 29: 77-103. [13] Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol , 2011, 21(6): 354-361. [14] 郑晓飞. 非编码RNA. 北京: 化学工业出版社, 2008: 2-3. [15] Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep , 2001, 2(11): 986-991. [16] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang JH, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C,Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R,Chaturvedi K, Deng ZM, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan WN, Ge WM, Gong FC, Gu ZP, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke ZX, Ketchum KA, Lai ZW, Lei YD, Li ZY, Li JY, Liang Y, Lin XY, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK,Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun JT, Wang ZY, Wang AH, Wang X, Wang J, Wei MH, Wides R, Xiao CL, Yan CH, Yao A, Ye J, Zhan M, Zhang WQ, Zhang HY, Zhao Q, Zheng LS, Zhong F, Zhong WY, Zhu SC, Zhao SY, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An HJ, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D,Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N,Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R,Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J,Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K,Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L,Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C,Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D,Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu XJ, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu XH. The sequence of the human genome. Science , 2001, 291(5507): 1304-1351. [17] Duret L, Chureau C, Samain S, Weissenbach J, Avner P. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science , 2006, 312(5780): 1653-1655. [18] Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB, Brockdorff N, Zakian SM. A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One , 2008, 3(6): e2521. [19] Flynn M, Saha O, Young P. Molecular evolution of the LNX gene family. BMC Evol Biol , 2011, 11: 235. [20] Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res , 2006, 16(1): 11-19. [21] Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Soldà G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res , 2008, 18(9): 1433-1445. [22] Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol , 2012, 9(3): 302-313. [23] Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA , 2008, 105(2): 716-721. [24] Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci , 2007, 120(Pt 15): 2498-2506. [25] Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell , 2009, 33(6): 717-726. [26] Golden DE, Gerbasi VR, Sontheimer EJ. An inside job for siRNAs. Mol Cell , 2008, 31(3): 309-312. [27] Zhu QH, Wang MB. Molecular functions of long non- coding RNAs in plants. Genes (Basel) , 2012, 3(1): 176- 190. [28] Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev , 2009, 23(13): 1494-1504. [29] Martens JA, Laprade L, Winston F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature , 2004, 429(6991): 571-574. [30] Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae . Cell , 2007, 131(4): 706-717. [31] Annilo T, Kepp K, Laan M. Natural antisense transcript of natriuretic peptide precursor A ( NPPA ): structural organization and modulation of NPPA expression. BMC Mol Biol , 2009, 10: 81. [32] Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science , 2008, 320(5881): 1336-1341. [33] Feng JC, Bi CM, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev , 2006, 20(11): 1470- 1484. [34] Fox AH, Lam YW, Leung AKL, Lyon CE, Andersen J, Mann M, Lamond AI. Paraspeckles: a novel nuclear domain. Curr Biol , 2002, 12(1): 13-25. [35] Sasaki YTF, Ideue T, Sano M, Mituyama T, Hirose T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A , 2009, 106(8): 2525-2530. [36] Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res , 2009, 19(3): 347-359. [37] Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev , 2003, 17(18): 2205-2232. [38] Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science , 2005, 309(5740): 1570-1573. [39] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev , 2002, 16(13): 1616-1626. [40] Hirsch J, Lefort V, Vankersschaver M, Boualem A, Lucas A, Thermes C, d'Aubenton-Carafa Y, Crespi M. Characterization of 43 non-protein-coding mRNA genes in Arabidopsis , including the MIR162a -derived transcripts. Plant Physiol , 2006, 140(4): 1192-1204. [41] Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP- Seq data. Nucleic Acids Res , 2013, 41(Database issue): D177-D187. [42] Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res , 2009, 37(Database issue): D122-D126. [43] Bu D, Yu K, Sun S, Xie C, Skogerbø G, Miao R, Xiao H, Liao Q, Luo H, Zhao G, Zhao H, Liu Z, Liu C, Chen R, Zhao Y. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res , 2012, 40(Database issue): D210-D215. [44] Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, Zhu W, Wu W, Chen R, Zhao Y. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res , 2014, 42(Database issue): D98-D103. [45] Volders PJ, Helsens K, Wang XW, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res , 2013, 41(Database issue): D246-D251. [46] Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein- RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res , 2014, 42(Database issue): D92-D97. [47] Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome- Seq data. Nucleic Acids Res , 2011, 39(Database issue): D202-D209. [48] Chen G, Wang ZY, Wang DQ, Qiu CX, Liu MX, Chen X, Zhang QP, Yan GY, Cui QH. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res , 2013, 41(Database issue): D983-D986. [49] MacIntosh GC, Wilkerson C, Green PJ. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol , 2001, 127(3): 765-776. [50] Marker C, Zemann A, Terhörst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Hüttenhofer A. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol , 2002, 12(23): 2002-2013. [51] Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ. Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci , 2008, 13(7): 329-334. [52] Song D, Yang Y, Yu B, Zheng B, Deng Z, Lu BL, Chen X, Jiang T. Computational prediction of novel non-coding RNAs in Arabidopsis thaliana. BMC Bioinformatics , 2009, 10(Suppl 1): S36. [53] Wen J, Parker BJ, Weiller GF. In Silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol , 2007, 7(4-5): 485-505. [54] Boerner S, McGinnis KM. Computational identification and functional predictions of long noncoding RNA in Zea mays . PLoS One , 2012, 7(8): e43047. [55] Xin MM, Wang Y, Yao YY, Song N, Hu ZR, Qin DD, Xie CJ, Peng HR, Ni ZF, Sun QX. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol , 2011, 11: 61. [56] Jin JJ, Liu J, Wang H, Wong L, Chua NH. PLncDB: plant long non-coding RNA database. Bioinformatics , 2013, 29(8): 1068-1071. [57] Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res , 2008, 36(Database issue): D1009-D1014. [58] Lamesch P, Berardini TZ, Li DH, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res , 2012, 40(Database issue): D1202-D1210. [59] Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res , 2011, 39(Database issue): D146-D151. [60] Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res , 2015,43(Database issue): D168-D173. [61] Chen DJ, Yuan CH, Zhang J, Zhang Z, Bai L, Meng YJ, Chen LL, Chen M. PlantNATsDB: a comprehensive database of plant natural antisense transcripts. Nucleic Acids Res , 2012, 40(Database issue): D1187-D1193. [62] Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G. In search of antisense. Trends Biochem Sci , 2004, 29(2): 88-94. [63] Werner A. Natural antisense transcripts. RNA Biol , 2005, 2(2): 53-62. [64] Charon C, Moreno AB, Bardou F, Crespi M. Non-protein- coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. Mol Plant , 2010, 3(4): 729-739. [65] Hüttenhofer A. RNomics: identification and function of small non-protein-coding RNAs in model organisms. Cold Spring Harb Symp Quant Biol , 2006, 71: 135-140. [66] Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res , 1998, 26(4): 1107-1115. [67] Burge CB, Karlin S. Finding the genes in genomic DNA. Curr Opin Struct Biol , 1998, 8(3): 346-354. [68] Lottaz C, Iseli C, Jongeneel CV, Bucher P. Modeling sequencing errors by combining Hidden Markov models. Bioinformatics , 2003, 19(Suppl 2): ii103-ii112. [69] Shimizu K, Adachi J, MuraokaY. ANGLE: a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA. J Bioinform Comput Biol , 2006, 4(3): 649-664. [70] Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA , 2010, 16(8): 1478-1487. [71] Badger JH, Olsen GJ. CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol , 1999, 16(4): 512-524. [72] Hatzigeorgiou AG, Fiziev P, Reczko M. DIANA-EST: a statistical analysis. Bioinformatics , 2001, 17(10): 913-919. [73] Mignone F, Grillo G, Liuni S, Pesole G. Computational identification of protein coding potential of conserved sequence tags through cross-species evolutionary analysis. Nucleic Acids Res , 2003, 31(15): 4639-4645. [74] Liu J, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet , 2006, 2(4): e29. [75] Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei LP, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res , 2007, 35(Web Server issue): W345- W349. [76] Lu ZJ, Yip KY, Wang GL, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C, Kato M, Miller DM, Slack F, Snyder M, Waterston RH, Reinke V, Gerstein MB. Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res , 2011, 21(2): 276-285. [77] Washietl S, Findeiβ S, Müller SA, Kalkhof S, von Bergen M, Hofacker IL, Stadler PF, Goldman N. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA , 2011, 17(4): 578-594. [78] Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell , 2012, 24(11): 4333-4345. [79] Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, Chua NH. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis . Genome Res , 2014, 24(3): 444-453. [80] Shuai P, Liang D, Tang S, Zhang ZJ, Ye CY, Su YY, Xia XL, Yin WL. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa . J Exp Bot , 2014, 65(17): 4975-4983. [81] Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana . New Phytol , 2014, 201(2): 574-584. [82] Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol , 2014, 15(2): R40. [83] McCutcheon JP, Eddy SR. Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Res , 2003, 31(14): 4119-4128. [84] Hüttenhofer A, Vogel J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res , 2006, 34(2): 635-646. [85] Campalans A, Kondorosi A, Crespi M. Enod40 , a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula . Plant Cell , 2004, 16(4): 1047-1059. [86] van de Sande K, Pawlowski K, Czaja I, Wieneke U, Schell J, Schmidt J, Walden R, Matvienko M, Wellink J, van Kammen A, Franssen H, Bisseling T. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science , 1996, 273(5273): 370-373. [87] Kouchi H, Takane K, So RB, Ladha JK, Reddy PM. Rice ENOD40 : isolation and expression analysis in rice and transgenic soybean root nodules. Plant J , 1999, 18(2): 121-129. [88] Cho J, Koo DH, Nam YW, Han CT, Lim HT, Bang JW, Hur Y. Isolation and characterization of cDNA clones expressed under male sex expression conditions in a monoecious cucumber plant ( Cucumis sativus L. cv. Winter Long). Euphytica , 2005, 146(3): 271-281. [89] Ma JX, Yan BX, Qu YY, Qin FF, Yang YT, Hao XJ, Yu JJ, Zhao Q, Zhu DY, Ao GM. Zm401 , a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem , 2008, 105(1): 136-146. [90] Shin H, Shin HS, Chen RJ, Harrison MJ. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J , 2006, 45(5): 712-726. [91] Song JH, Cao JS, Yu XL, Xiang X. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis. J Plant Physiol , 2007, 164(8): 1097-1100. [92] Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet , 2007, 23(12): 614-622. [93] Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell , 2008, 135(4): 635-648. [94] Rowley MJ, Böhmdorfer G, Wierzbicki AT. Analysis of long non-coding RNAs produced by a specialized RNA polymerase in Arabidopsis thaliana . Methods , 2013, 63(2): 160-169. [95] Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol , 2011, 12(8): 483-492. [96] Martín AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de La Peña A, Leyva A, Paz-Ares J. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis . Plant J , 2000, 24(5): 559-567. [97] Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet , 2007, 39(8): 1033-1037. [98] Liu CM, Muchhal US, Raghothama KG. Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol , 1997, 33(5): 867-874. [99] Burleigh SM, Harrison MJ. Characterization of the Mt4 gene from Medicago truncatula . Gene , 1998, 216(1): 47-53. [100] Burleigh SH, Harrison MJ. The down-regulation of Mt4 -like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol , 1999, 119(1): 241-248. [101] Burleigh SH, Harrison MJ. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol , 1997, 34(2): 199-208. [102] Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M. Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol , 2003, 158(2): 239-248. [103] Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis . Curr Biol , 2005, 15(22): 2038-2043. [104] Nagano T, Fraser P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome , 2009, 20(9-10): 557-562. [105] Swiezewski S, Liu FQ, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature , 2009, 462(7274): 799-802. [106] Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES. Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PLoS One , 2011, 6(6): e21513. [107] Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science , 2011, 331(6013): 76-79. [108] Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A , 2012, 109(7): 2654-2659. [109] Ding JH, Shen JQ, Mao HL, Xie WB, Li XH, Zhang QF. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol Plant , 2012, 5(6): 1210-1216. [110] Zhou H, Liu QJ, Li J, Jiang DG, Zhou LY, Wu P, Lu S, Li F, Zhu LY, Liu ZL, Chen LT, Liu YG, Zhuang CX. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res , 2012, 22(4): 649-660. [111] Zhu DM, Deng XW. A non-coding RNA locus mediates environment-conditioned male sterility in rice. Cell Res , 2012, 22(5): 791-792. [112] Yang WC, Katinakis P, Hendriks P, Smolders A, de Vries F, Spee J, van Kammen A, Bisseling T, Franssen H. Characterization of GmENOD40 , a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J , 1993, 3(4): 573-585. [113] Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J , 1994, 13(21): 5099-5112. [114] Laporte P, Satiat-Jeunemaître B, Velasco I, Csorba T, Van de Velde W, Campalans A, Burgya J, Arevalo-Rodriguez M, Crespi M. A novel RNA-binding peptide regulates the establishment of the Medicago truncatula - Sinorhizobium meliloti nitrogen-fixing symbiosis. Plant J , 2010, 62(1): 24-38. [115] Vleghels I, Hontelez J, Ribeiro A, Fransz P, Bisseling T, Franssen H. Expression of ENOD40 during tomato plant development. Planta , 2003, 218(1): 42-49. [116] Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA , 2002, 99(4): 1915-1920. [117] Sousa C, Johansson C, Charon C, Manyani H, Sautter C, Kondorosi A, Crespi M. Translational and structural requirements of the early nodulin gene enod40 , a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Mol Cell Biol , 2001, 21(1): 354-366. [118] Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski J. Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res , 2000, 28(1): 197-200. [119] Dai XY, Yu JJ, Zhao Q, Zhu DY, Ao GM. Non-coding RNA for zm401 , a pollen-specific gene of Zea mays . Acta Bot Sin , 2004, 46(4): 497-504. [120] Ma JX, Zhao Q, Yu JJ, Ao GM. Ectopic expression of a maize pollen specific gene, zm401 , results in aberrant anther development in tobacco. Euphytica , 2005, 144(1-2): 133-140. [121] Song JH, Cao JS, Wang CG. BcMF11 , a novel non-coding RNA gene from Brassica campestris , is required for pollen development and male fertility. Plant Cell Rep , 2013, 32(1): 21-30. |
[1] | 梁承志. 从作物基因组分析到整合组学知识库建设[J]. 遗传, 2019, 41(9): 875-882. |
[2] | 王博,刘芳,张二春,沃晨亮,陈振家,钱璞毅,卢浩荣,曾文君,陈泰,危金普,万仟,王韧,徐讯. 国家基因库:共有、共为、共享[J]. 遗传, 2019, 41(8): 761-772. |
[3] | 李鑫,李梦玮,张依楠,徐寒梅. 常用肿瘤基因分析方法及基于TCGA数据库的分析应用[J]. 遗传, 2019, 41(3): 234-242. |
[4] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[5] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[6] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[7] | 宋洁, 吴永波, 周跃恒, 柳波娟, 王楠, 郝转芳, 吴元奇. 作物组学数据库的比较和应用[J]. 遗传, 2018, 40(7): 534-545. |
[8] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[9] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[10] | 李敏,董翔宇,梁浩,冷丽,张慧,王守志,李辉,杜志强. 肉鸡腹脂率双向选择系群体表型数据库(NEAUHLFPD)的设计及其功能实现[J]. 遗传, 2017, 39(5): 430-437. |
[11] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[12] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[13] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[14] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
[15] | 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能[J]. 遗传, 2014, 36(6): 536-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: