遗传 ›› 2015, Vol. 37 ›› Issue (12): 1175-1184.doi: 10.16288/j.yczz.15-233
• 综述 • 下一篇
张进威, 罗毅, 王宇豪, 何刘军, 李明洲, 王讯
收稿日期:
2015-05-20
出版日期:
2015-12-20
发布日期:
2015-09-16
通讯作者:
王讯,副教授,硕士生导师,研究方向:猪遗传育种与繁殖。E-mail:wangxun99@163.com
E-mail:JinweiZhang50@163.com
作者简介:
张进威,硕士研究生,专业方向:猪遗传育种与繁殖。E-mail: JinweiZhang50@163.com
基金资助:
Jinwei Zhang, Yi Luo, Yuhao Wang, Liujun He, Mingzhou Li, Xun Wang
Received:
2015-05-20
Online:
2015-12-20
Published:
2015-09-16
摘要: 脂肪组织不仅在维持机体能量代谢和稳态上发挥重要作用,同时也是重要的内分泌器官。脂肪细胞分化是由间充质干细胞(Mesenchymal stem cells, MSC)向成熟脂肪细胞分化的复杂生理过程,该过程由大量转录因子、激素、信号通路分子协同调控。miRNA作为内源性非编码RNA,主要通过抑制转录后翻译等机制来调控基因表达。近年来越来越多的证据表明miRNA通过调控脂肪细胞分化相关的转录因子和重要信号分子进而影响动物脂肪细胞的分化和脂肪形成。本文对miRNA影响动物白色、棕色和米色脂肪细胞分化的作用机制及其相关调控通路和关键因子进行了归纳总结,以期为肥胖等代谢性疾病的治疗提供一定的理论指导和新的治疗思路。
张进威, 罗毅, 王宇豪, 何刘军, 李明洲, 王讯. MicroRNA调控动物脂肪细胞分化研究进展[J]. 遗传, 2015, 37(12): 1175-1184.
Jinwei Zhang, Yi Luo, Yuhao Wang, Liujun He, Mingzhou Li, Xun Wang. MicroRNA regulates animal adipocyte differentiation[J]. HEREDITAS(Beijing), 2015, 37(12): 1175-1184.
[1] Haidar YM, Cosman BC. Obesity epidemiology. Clin Colon Rectal Surg , 2011, 24(4): 205-210. [2] Adamczak M, Wiecek A. The adipose tissue as an endocrine organ. Semin Nephrol , 2013, 33(1): 2-13. [3] Son YH, Ka S, Kim AY, Kim JB. Regulation of adipocyte differentiation via microRNAs. Endocrinol Metab , 2014, 29(2): 122-135. [4] Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells , 2014, 6(1): 33-42. [5] Chen L, Song JL, Cui JH, Hou J, Zheng XH, Li C, Liu L. MicroRNAs regulate adipocyte differentiation. Cell Biol Int , 2013, 37(6): 533-546. [6] Trajkovski M, Lodish H. MicroRNA networks regulate development of brown adipocytes. Trends Endocrin Met , 2013, 24(9): 442-450. [7] Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Bio , 2014, 15(9): 565-576. [8] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 2004, 116(2): 281-297. [9] Ha MJ, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Bio , 2014, 15(8): 509-524. [10] Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie , 2011, 93(11): 1897-1904. [11] Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ , 2015, 22(1): 22-33. [12] Wu LG, Fan JH, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA , 2006, 103(11): 4034-4039. [13] Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science , 2012, 336(6078): 237-240. [14] Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet , 2014, 15(6): 394-408. [15] Wu L, Zhou HY, Zhang QQ, Zhang JG, Ni FR, Liu C, Qi YJ. DNA methylation mediated by a microRNA pathway. Mol Cell , 2010, 38(3): 465-475. [16] Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Bio , 2011, 12(11): 722-734. [17] Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med , 2013, 19(10): 1252-1263. [18] Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol , 2014, 10(1): 24-36. [19] Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature , 2012, 481(7382): 463-468. [20] 吴家睿. 脂肪细胞分化: 一个故事, 两个章节. 科学通报, 2011, 56(17): 1327-1334. [21] 陈晨. miR-135a和miR-183对3T3-L1前脂肪细胞分化及脂肪形成的调控作用研究[学位论文]. 武汉: 华中农业大学, 2013. [22] 庞卫军, 李影, 卢荣华, 白亮, 吴江维, 杨公社. 脂肪细胞分化过程中的分子事件. 细胞生物学杂志, 2005, 27(5): 497-500. [23] Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol , 2014, 76(1): 225-249. [24] Seale P, Bjork B, Yang WL, Kajimura S, Chin S, Kuang SH, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman. PRDM16 controls a brown fat/skeletal muscle switch. Nature , 2008, 454(7207): 961-967. [25] Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang KX, Tu H, Van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell , 2012, 150(2): 366-376. [26] Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun , 2010, 392(3): 323-328. [27] Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol , 2011, 31(4): 626-638. [28] Yang Z, Bian CJ, Zhou H, Huang S, Wang SH, Liao LM, Zhao RC. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev , 2011, 20(2): 259-267. [29] Sun FY, Wang JY, Pan QH, Yu YC, Zhang Y, Wan Y, Wang J, Li XY, Hong A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun , 2009, 380(3): 660-665. [30] Tang YF, Zhang Y, Li XY, Li C, Tian WD, Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS , 2009, 13(4): 331-336. [31] Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A, Suzuki H, Urayama O, Yamada N, Shimano H. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun , 2009, 385(4): 492-496. [32] Prestwich TC, MacDougald OA. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol , 2007, 19(6): 612-617. [33] Chen H, Wang SQ, Chen LX, Chen YS, Wu M, Zhang Y, Yu KF, Huang Z, Qin LJ, Mo DL. MicroRNA-344 inhibits 3T3-L1 cell differentiation via targeting GSK3β of Wnt/β-catenin signaling pathway. FEBS Lett , 2014, 588(3): 429-435. [34] Chen C, Xiang H, Peng YL, Peng J, Jiang SW. Mature miR-183, negatively regulated by transcription factor GATA3, promotes 3T3-L1 adipogenesis through inhibition of the canonical Wnt/β-catenin signaling pathway by targeting LRP6 . Cell Signal , 2014, 26(6): 1155-1165. [35] Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie , 2005, 87(1): 51-56. [36] Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol , 2011, 38(4): 239-246. [37] Chen L, Hou J, Ye LF, Chen YW, Cui JH, Tian WD, Li C, Liu L. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep , 2014, 4: 3819. [38] Liu SH, Yang Y, Wu JR. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun , 2011, 414(3): 618-624. [39] Mi L, Chen YS, Zheng XL, Li YL, Zhang QL, Mo DL, Yang GS. MicroRNA-139-5p suppresses 3T3-L1 preadipocyte differentiation through notch and IRS1/PI3K/Akt insulin signaling pathways. J Cell Biochem , 2015, 116(7): 1195-1204. [40] Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol , 2012, 14(12): 1330-1335. [41] Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van IJcken W, Grosveld F, Dekemp RA, Boushel R, Harper ME, Rudnicki MA. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab , 2013, 17(2): 210-224. [42] Chen Y, Siegel F, Kipschull S, Haas B, Fröhlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun , 2013, 4(4): 1769. [43] Sun L, Xie HM, Mori MA, Alexander R, Yuan BB, Hattangadi SM, Liu QQ, Kahn CR, Lodish HF. Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol , 2011, 13(8): 958-965. [44] Pan DN, Mao CX, Quattrochi B, Friedline RH, Zhu LJ, Jung DY, Kim JK, Lewis B, Wang YX. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nat Commun , 2014, 5: 4725. [45] Fu T, Seok S, Choi S, Huang Z, Suino-Powell K, Xu HE, Kemper B, Kemper JK. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte Fibroblast Growth Factor 21 signaling and SIRT1 function. Mol Cell Biol , 2014, 34(22): 4130-4142. [46] Hu F, Wang M, Xiao T, Yin BQ, He LY, Meng W, Dong MJ, Liu F. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes , 2015, 64(6): 2056-2068. [47] Zhou JY, Li LX. MicroRNAs are key regulators of brown adipogenesis. BBA-Mol Cell Biol L , 2014, 1841(11): 1590-1595. [48] Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun , 2009, 390(2): 247-251. [49] Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castanò I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L. miR-519d overexpression is associated with human obesity. Obesity , 2010, 18(11): 2170-2176. [50] Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab , 2010, 299(2): E198-E206. [51] Kennell JA, Gerin I, MacDougald OA, Cadigan KM. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci USA , 2008, 105(40): 15417-15422. [52] Qin LM, Chen YS, Niu YN, Chen WQ, Wang QW, Xiao SQ, Li AN, Xie Y, Li J, Zhao X, He ZY, Mo DL. A deep investigation into the adipogenesis mechanism: Profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/β-catenin signaling pathway. BMC Genomics , 2010, 11(1): 320. [53] Qadir AS, Woo KM, Ryoo HM, Baek JH. Insulin suppresses distal-less homeobox 5 expression through the up-regulation of microRNA-124 in 3T3-L1 cells. Exp Cell Res , 2013, 319(14): 2125-2134. [54] He AB, Zhu LL, Gupta N, Chang YS, Fang FD. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol , 2007, 21(11): 2785-2794. [55] Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, Zhu BY, Gao ZP, Tang CK, Yin WD, Zhang L, Liao DF. Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol , 2009, 36(9): e32-e39. [56] Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol , 2011, 13(4): 434-446. [57] Yi C, Xie WD, Li F, Lv Q, He J, Wu JB, Gu DY, Xu NH, Zhang YO. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett , 2011, 585(20): 3303-3309. [58] El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, Van Obberghen E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic β-cells. Diabetes , 2008, 57(10): 2708-2717. [59] Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells , 2009, 27(12): 3093-3102. [60] Shi XE, Li YF, Jia L, Ji HL, Song ZY, Cheng J, Wu GF, Song CC, Zhang QL, Zhu JY, Yang GS. MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation. Int J Mol Sci , 2014, 15(5): 8526-8538. [61] Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT 2A R and 5-HT 2C R and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol , 2010, 24(10): 1978-1987. [62] Huang J, Zhao L, Xing LP, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells , 2010, 28(2): 357-364. [63] Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab , 2007, 91(3): 209-217. [64] Xie HM, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes , 2009, 58(5): 1050-1057. [65] Andersen DC, Jensen CH, Schneider M, Nossent AY, Eskildsen T, Hansen JL, Teisner B, Sheikh SP. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res , 2010, 316(10): 1681-1691. [66] Wu Y, Zuo JR, Zhang YC, Xie Y, Hu F, Chen LH, Liu BL, Liu F. Identification of miR-106b-93 as a negative regulator of brown adipocyte differentiation. Biochem Biophys Res Commun , 2013, 438(4): 575-580. [67] Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B. Distinct expression of muscle-specific MicroRNAs (myomirs) in brown adipocytes. J Cell Physiol, 2009, 218(2): 444-449. [68] Sun L, Trajkovski M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism , 2014, 63(2): 272-282. [69] Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mössenböck K, Bernhardt GA, Mayr T, Hildner F, Grillari J, Ailhaud G, Herzig S, Cinti S, Amri EZ, Scheideler M. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells , 2014, 32(6): 1578-1590. [70] Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol , 2012, 10(4): e1001314. |
[1] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[2] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[3] | 李欢, 冯晋川, 李贵林, 王讯, 李明洲, 刘海峰. Lnc-RAP3对小鼠3T3-L1前脂肪细胞分化的影响[J]. 遗传, 2018, 40(9): 758-766. |
[4] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[5] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[6] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[7] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[8] | 亢逸,关桂君,洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. |
[9] | 李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[10] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[11] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[12] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[13] | 符梅, 徐克惠, 许文明. Dicer调节生殖功能的研究进展[J]. 遗传, 2016, 38(7): 612-622. |
[14] | 贾振伟. 线粒体与多潜能干细胞功能[J]. 遗传, 2016, 38(7): 603-611. |
[15] | 陈龙, 张宝云, 冯光德, 向伟, 马云霞, 陈航, 储明星, 王凭青. miRNA介导PGR信号通路在雌性生殖功能调节中的作用机制[J]. 遗传, 2016, 38(1): 40-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: