[1] Porteus M. Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev , 2007, 24(1): 195-212. [2] Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol , 2001, 21(1): 289-297. [3] Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science , 2003, 300(5620): 763. [4] Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng , 2010, 105(2): 330-340. [5] Ménoret S, Iscache AL, Tesson L, Rémy S, Usal C, Osborn MJ, Cost GJ, Brüggemann M, Buelow R, Anegon I. Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol , 2010, 40(10): 2932-2941. [6] Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN. Targeted gene knockout in mammalian cells by using engineered zinc- finger nucleases. Proc Natl Acad Sci USA , 2008, 105(15): 5809-5814. [7] Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics , 2010, 186(2): 757-761. [8] Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol , 2011, 29(2): 143-148. [9] Li T, Huang S, Zhao XF, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res , 2011, 39(14): 6315-6325. [10] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [11] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [12] Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [13] Frank S, Skryabin BV, Greber B. A modified TALEN-based system for robust generation of knock-out human pluripotent stem cell lines and disease models. BMC Genomics , 2013, 14: 773. [14] Ding QR, Lee YK, Schaefer EAK, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia YL, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell , 2013, 12(2): 238-251. [15] Carlson DF, Tan WF, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA , 2012, 109(43): 17382- 17387. [16] Krejci L, Altmannova V, Spirek M, Zhao XL. Homologous recombination and its regulation. Nucleic Acids Res , 2012, 40(13): 5795-5818. [17] Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev , 1999, 63(2): 349-404. [18] Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics , 2006, 172(4): 2391-2403. [19] Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Songyang Z, Ma WB, Zhou CQ, Huang JJ. CRISPR/Cas9- mediated gene editing in human tripronuclear zygotes. Protein Cell , 2015, 6(5): 363-372. [20] Shukla VK, Doyon Y, Miller JC, Dekelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, Mccaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature , 2009, 459(7245): 437-441. [21] Lin FL, Sperle K, Sternberg N. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol Cell Biol , 1990, 10(1): 113-119. [22] Fishman-Lobell J, Rudin N, Haber JE. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol , 1992, 12(3): 1292-1303. [23] Maryon E, Carroll D. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol Cell Biol , 1991, 11(6): 3278-3287. [24] Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem , 2010, 79: 181-211. [25] Rodgers K, Mcvey M. Error-prone repair of DNA double-strand breaks. J Cell Physiol , 2016, 231(1): 15-24. [26] Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet , 2014, 10(1): e1004086. [27] Ramsden DA, Gellert M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J , 1998, 17(2): 609-614. [28] Wang C, Lees-Miller SP. Detection and repair of ionizing radiation-induced DNA double strand breaks: new developments in nonhomologous end joining. Int J Radiat Oncol Biol Phys , 2013, 86(3): 440-449. [29] Kuhar R, Gwiazda KS, Humbert O, Mandt T, Pangallo J, Brault M, Khan I, Maizels N, Rawlings DJ, Scharenberg AM, Certo MT. Novel fluorescent genome editing reporters for monitoring DNA repair pathway utilization at endonuclease-induced breaks. Nucleic Acids Res , 2014, 42(1): e4. [30] Alwin S, Gere MB, Guhl E, Effertz K, Barbas III CF, Segal DJ, Weitzman MD, Cathomen T. Custom zinc-finger nucleases for use in human cells. Mol Ther , 2005, 12(4): 610-617. [31] Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol , 2007, 25(7): 786-793. [32] Lee HJ, Kim E, Kim JS. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res , 2010, 20(1): 81-89. [33] Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res , 2009, 19(7): 1279-1288. [34] Perez EE, Wang JB, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH. Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases. Nat Biotechnol , 2008, 26(7): 808-816. [35] Kim H, Um E, Cho SR, Jung C, Kim H, Kim JS. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat Methods , 2011, 8(11): 941-943. [36] Ramakrishna S, Cho SW, Kim S, Song M, Gopalappa R, Kim JS, Kim H. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun , 2014, 5: 3378. [37] Kim YH, Ramakrishna S, Kim H, Kim JS. Enrichment of cells with TALEN-induced mutations using surrogate reporters. Methods , 2014, 69(1): 108-117. [38] Kim H, Kim MS, Wee G, Lee CI, Kim H, Kim JS. Magnetic separation and antibiotics selection enable enrichment of cells with ZFN/TALEN-induced mutations. PLoS One , 2013, 8(2): e56476. [39] Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene , 1992, 111(2): 229-233. [40] Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA , 2000, 97(22): 11984-11989. [41] Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA , 1994, 91(26): 12501-12504. [42] Koo OJ, Park SJ, Lee C, Kang JT, Kim S, Moon JH, Choi JY, Kim H, Jang G, Kim JS, Kim S, Lee BC. Production of mutated porcine embryos using zinc finger nucleases and a reporter-based cell enrichment system. Asian-Australas J Anim Sci , 2014, 27(3): 324-329. [43] Willasch A, Eing S, Weber G, Kuçi S, Schneider G, Soerensen J, Jarisch A, Rettinger E, Koehl U, Klingebiel T, Kreyenberg H, Bader P. Enrichment of cell subpopulations applying automated MACS technique: purity, recovery and applicability for PCR-based chimerism analysis. Bone Marrow Transplant , 2010, 45(1): 181-189. [44] Grutzkau A, Radbruch A. Small but mighty: how the MACS ® -technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A , 2010, 77(7): 643-647. [45] Wang L. Construction of zinc finger nucleases and its application of animal genomic editing [Dissertation]. Xianyang: Northwest Agriculture and Forestry University of Science and Technology, 2013. 王令. 锌指核酸酶的构建及其在动物基因组编辑中的应用[学位论文]. 咸阳: 西北农林科技大学, 2013. [46] Xu K, Ren CH, Liu ZT, Zhang T, Zhang TT, Li D, Wang L, Yan Q, Guo LJ, Shen JC, Zhang ZY. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus . Cell Mol Life Sci , 2015, 72(2): 383-399. [47] Wu JQ, Mei G, Liu ZG, Chen YS, Cong PQ, He ZY. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system. Hereditas(Beijing) , 2015, 37(1): 55-62. 吴金青, 梅瑰, 刘志国, 陈瑶生, 丛佩清, 何祖勇. 应用SSA报告载体提高ZFN和CRISPR/Cas9对猪IGF2基因的打靶效率. 遗传, 2015, 37(1): 55-62. [48] Wang L, Lin J, Zhang TT, Xu K, Ren CH, Zhang ZY. Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS One , 2013, 8(5): e64687. [49] Ren CH, Xu K, Liu ZT, Shen JC, Han FR, Chen ZL, Zhang ZY. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells. Cell Mol Life Sci , 2015, 72(14): 2763-2772. |