[1] | Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002, 2(8): 563-572. | [2] | Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol, 2009, 6(6): 339-351. | [3] | Méhes G, Witt A, Kubista E, Ambros PF. Circulating breast cancer cells are frequently apoptotic. Am J Pathol, 2001, 159(1): 17-20. | [4] | Larson CJ, Moreno JG, Pienta KJ, Gross S, Repollet M, O'hara SM, Russell T, Terstappen LWMM. Apoptosis of circulating tumor cells in prostate cancer patients. Cytometry A, 2004, 62(1): 46-53. | [5] | Zhang LX, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med, 2013, 5(180): 180ra48 | [6] | Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, B?uerle T, Wallwiener M, Holland-Letz T, H?fner T, Sprick M, Scharpff M, Marmé F, Sinn HP, Pantel K, Weichert W, Trumpp A. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol, 2013, 31(6): 539-544. | [7] | Zhang Z, Shiratsuchi H, Lin J, Chen GA, Reddy RM, Azizi E, Fouladdel S, Chang AC, Lin L, Jiang H, Waghray M, Luker G, Simeone DM, Wicha MS, Beer DG, Ramnath N, Nagrath S. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget, 2014, 23: 29-31. | [8] | Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, Lamb CR, Taplin ME, Nakabayashi M, Chabot MS, Li T, Lee GS, Boehm JS, Kantoff PW, Hahn WC, Wittrup KD, Love JC. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol, 2014, 6(4): 388-398. | [9] | Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450(7173): 1235-1239. | [10] | Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang XJ. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011, 11(20): 3449-3457. | [11] | Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Yu M, Chen PI, Morgan B, Trautwein J, Kimura A, Sengupta S, Stott SL, Karabacak NM, Barber TA, Walsh JR, Smith K, Spuhler PS, Sullivan JP, Lee RJ, Ting DT, Luo X, Shaw AT, Bardia A, Sequist LV, Louis DN, Maheswaran S, Kapur R, Haber DA, Toner M. Inertial focusing for tumor antigen-dependent and-independent sorting of rare circulating tumor cells. Sci Transl Med, 2013, 5(179): 179ra47 | [12] | Chung J, Issadore D, Ullal A, Lee K, Weissleder R, Lee H. Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip. Biomicrofluidics, 2013, 7(5): 54107. | [13] | Deng YL, Zhang Y, Sun S, Wang ZH, Wang MJ, Yu BQ, Czajkowsky DM, Liu BY, Li Y, Wei W, Shi QH. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep, 2014, 4: 7499. | [14] | Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA, 2010, 107(43): 18392-18397. | [15] | Sun S, Deng Y L. Single-cell detection of EGFR gene mutation in circulating tumor cells in lung cancer. Hereditas (Beijing), 2015, 37(12): 1251-1257. | [15] | 孙帅, 邓宇亮. 肺癌循环肿瘤细胞的单细胞EGFR基因突变检测. 遗传, 2015, 37(12): 1251-1257. | [16] | Forbes T P, Kralj J G. Engineering and analysis of surface interactions in a microfluidic herringbone micromixer. Lab Chip, 2012, 12(15): 2634-2637. | [17] | O’Neil R G, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imag Biol, 2005, 7(6): 388-392. | [18] | Kravchenko-Balasha N, Wang J, Remacle F, Levine RD, Heath JR. Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc Natl Acad Sci USA, 2014, 111(17): 6521-6526. | [19] | Krebs M G, Metcalf R L, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat Rev Clin Oncol, 2014, 11(3): 129-144. | [20] | Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu HL, Comaills V, Zheng ZL, Wittner BS, Stojanov P, Brachtel E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 2014, 345(6193): 216-220. | [21] | Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, Schumacher U, Costes V, Maudelonde T, Pantel K, Alix-Panabières C. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res, 2015, 75(5): 892-901. | [22] | Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang YB, Namavari M, Gambhir SS. Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem, 2007, 18(3): 628-634. | [23] | Nitin N, Carlson AL, Muldoon T, El-Naggar AK, Gillenwater A, Richards-Kortum R. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int J Cancer, 2009, 124(11): 2634-2642. | [24] | Sheth RA, Josephson L, Mahmood U. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography. J Biomed Opt, 2009, 14(6): 064014. | [25] | Millon S R, Ostrander JH, Brown JQ, Raheja A, Seewaldt VL, Ramanujam N. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Rese Treat, 2011, 126(1): 55-62. | [26] | Li YY, Lu QH, Liu HL, Wang JF, Zhang PC, Liang HG, Jiang L, Wang ST. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv Mater, 2015, 27(43): 6848-6854. | [27] | Zhang FL, Jiang Y, Liu XL, Meng JX, Zhang P, C Liu HL, Yang G, Li GN, Jiang L, Wan LJ, Hu JS, Wang ST. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett, 2015, 16(1): 766-772. | [28] | Zeng T, Situ B, Zheng L. Detection of circulating tumor cells and real-time personalized cancer therapy. Chin J Lab Med, 2015, 38(1): 13-15. | [28] | 曾涛, 司徒博, 郑磊. 循环肿瘤细胞检测与实时个体化医疗. 中华检验医学杂志, 2015, 38(1): 13-15. | [29] | Wang ST, Wang H, Jiao J, Chen KJ, Owens GE, Kamei K, Sun J, Sherman DJ, Behrenbruch CP, Wu H, Tseng HR. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed Engl, 2009, 48(47): 8970-8973. | [30] | Guo W, Sun YF, Pan BS, Fan J. Detection and clinical application of circulating tumor cells. Chin J Clin Lab Mgt (Electronic Edition), 2014, 2(3): 43-48. | [30] | 郭玮, 孙云帆, 潘柏申, 樊嘉. 循环肿瘤细胞检测及临床应用价值. 中华临床实验室管理电子杂志, 2014, 2(3): 43-48 | [31] | Zhang KL, Gao XM. The biological characteristics and significance of circulating tumor cells in patients with solid maligancies. Fudan Univ J Med Sci, 2016, 43(1): 94-98. | [31] | 张凯莉, 高小妹. 循环肿瘤细胞的生物学特性及其意义. 复旦学报(医学版), 2016, 43(1): 94-98. |
|