[1] | Salmon AH, Neal CR, Harper SJ . New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens, 2009, 18(3):197-205. | [2] | Camici M . Renal glomerular permselectivity and vascular endothelium. Biomed Pharmacother, 2005, 59(1-2):30-37. | [3] | Reiser J, Altintas MM. Podocytes. F1000Res, 2016, 5: F1000 Faculty Rev-114. | [4] | Yang FJ, Chen YX, Zhang Y, Qiu LR, Chen Y, Zhou JH . Novel NPHS1 gene mutations in a Chinese family with congenital nephrotic syndrome. J Genet, 2016, 95(1):161-166. | [5] | Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C . NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet, 2000, 24(4):349-354. | [6] | Paix?o AD, Alexander BT . How the kidney is impacted by the perinatal maternal environment to develop hypertension. Biol Reprod, 2013, 89(6):144. | [7] | Pruett D, Waterman EH, Caughey AB . Fetal alcohol exposure: consequences, diagnosis, and treatment. Obstet Gynecol Surv, 2013, 68(1):62-69. | [8] | Shen L, Liu ZF, Gong J, Zhang L, Wang LL, Magdalou J, Chen LB, Wang H . Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats. Toxicol Appl Pharmacol, 2014, 274(2):263-273. | [9] | Rueda-Clausen CF, Morton JS, Oudit GY, Kassiri Z, Jiang Y, Davidge ST . Effects of hypoxia-induced intrauterine growth restriction on cardiac siderosis and oxidative stress. J Dev Orig Health Dis, 2012, 3(5):350-357. | [10] | Fukasawa H, Bornheimer S, Kudlicka K, Farquhar MG . Slit diaphragms contain tight junction proteins. J Am Soc Nephrol, 2009, 20(7):1491-1503. | [11] | Drenckhahn D, Franke RP . Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest, 1988, 59(5):673-682. | [12] | Sequeira Lopez MLS, Gomez RA . Development of the Renal Arterioles. J Am Soc Nephrol, 2011, 22(12):2156-2165. | [13] | Qiu X , Wei RF , Zhang LQ , He FC . The roles of signaling pathways in regulating kidney development. Hereditas (Beijing), 2015, 37( 1): 1- 7. | [13] | 邱晓, 韦荣飞, 张令强, 贺福初 . 肾脏发育中信号通路的调控作用. 遗传, 2015, 37( 1): 1- 7. [DOI] | [14] | Greka A, Mundel P . Cell biology and pathology of podocytes. Annu Rev Physiol, 2012, 74:299-323. | [15] | May CJ, Saleem M, Welsh GI . Podocyte dedifferentiation: A specialized process for a specialized cell. Front Endocrinol, 2014, 5:148. | [16] | Garg P, Verma R, Nihalani D, Johnstone DB, Holzman LB . Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol, 2007, 27(24):8698-8712. | [17] | Tryggvason K, Pikkarainen T, Patrakka J . Nck links nephrin to actin in kidney podocytes. Cell, 2006, 125(2):221-224. | [18] | Ovunc B, Ashraf S, Vega-Warner V, Bockenhauer D, Elshakhs NA, Joseph M, Hildebrandt F , Gesellschaft für P?diatrische Nephrologie (GPN) Study Group. Mutation analysis of NPHS1 in a worldwide cohort of congenital nephrotic syndrome patients. Nephron Clin Pract, 2012, 120(3):c139-c146. | [19] | Palmén T, Lehtonen S, Ora A, Kerjaschki D, Antignac C, Lehtonen E, Holth?fer H . Interaction of endogenous nephrin and CD2-associated protein in mouse epithelial M-1 cell line. J Am Soc Nephrol, 2002, 13(7):1766-1772. | [20] | Patrakka J, Tryggvason K . Nephrin--a unique structural and signaling protein of the kidney filter. Trends Mol Med, 2007, 13(9):396-403. | [21] | Adair BD, Altintas MM, M?ller CC, Arnaout MA, Reiser J . Structure of the kidney slit diaphragm adapter protein CD2-associated protein as determined with electron microscopy. J Am Soc Nephrol, 2014, 25(7):1465-1473. | [22] | Shaw AS, Miner JH . CD2-associated protein and the kidney. Curr Opin Nephrol Hypertens, 2001, 10(1):19-22. | [23] | Chai OH, Song CH, Park SK, Kim W, Cho ES . Molecular regulation of kidney development. Anat Cell Biol, 2013, 46(1):19-31. | [24] | Costantini F . Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation, 2006, 74(7):402-421. | [25] | Hou G, Wu V, Singh G, Holzman LB, Tsui CC . Ret is critical for podocyte survival following glomerular injury in vivo. Am J Physiol Renal Physiol, 2015, 308(7):F774-F783. | [26] | Liu F, Millar SE . Wnt/β-catenin signaling in oral tissue development and disease. J Dent Res, 2010, 89(4):318-330. | [27] | Halt K, Vainio S . Coordination of kidney organogenesis by Wnt signaling. Pediatr Nephrol, 2014, 29(4):737-744. | [28] | Boyle SC, Kim M, Valerius MT , McMahon AP, Kopan R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development, 2011, 138(19):4245-4254. | [29] | Michos O . Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev, 2009, 19(5):484-490. | [30] | Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science, 1999, 284(5415):770-776. | [31] | Cheng HT, Kopan R . The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney Int, 2005, 68(5):1951-1952. | [32] | Wang P, Pereira FA, Beasley D, Zheng H . Presenilins are required for the formation of comma- and S-shaped bodies during nephrogenesis. Development, 2003, 130(20):5019-5029. | [33] | McCright B, Gao X, Shen LY, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R, Gridley T . Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development, 2001, 128:491-502. | [34] | Tanaka E, Asanuma K, Kim E, Sasaki Y, Oliva Trejo JA, Seki T, Nonaka K, Asao R, Nagai-Hosoe Y, Akiba-Takagi M, Hidaka T, Takagi M, Koyanagi A, Mizutani S, Yagita H, Tomino Y . Notch2 activation ameliorates nephrosis. Nat Commun, 2014, 5:3296. | [35] | Reidy KJ, Rosenblum ND . Cell and molecular biology of kidney development. Semin Nephrol, 2009, 29(4):321-337. | [36] | Done SC, Takemoto M, He L, Sun Y, Hultenby K, Betsholtz C, Tryggvason K . Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int, 2008, 73(6):697-704. | [37] | Ikezumi Y, Suzuki T, Karasawa T, Yamada T, Hasegawa H, Nishimura H, Uchiyama M . Low birthweight and premature birth are risk factors for podocytopenia and focal segmental glomerulosclerosis. Am J Nephrol, 2013, 38(2):149-157. | [38] | Ao Y, Sun ZX, Hu SS, Zuo N, Li B, Yang SL, Xia LP, Wu Y, Wang LL, He Z, Wang H . Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol, 2015, 287(2):128-138. | [39] | Sun Z, Hu S, Zuo N, Yang S, He Z, Ao Y, Wang H . Prenatal nicotine exposure induced GDNF/c-Ret pathway repression-related fetal renal dysplasia and adult glomerulosclerosis in male offspring. Toxicol Res, 2015, 4(4):1045-1058. | [40] | Wei ZZ, Song LQ, Wei J, Chen T, Chen J, Lin Y, Xia W, Xu B, Li XG, Chen X, Li YY, Xu SQ . Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett, 2012, 212(2):212-221. | [41] | Zarzecki M, Adamczak M, Wystrychowski A, Gross ML, Ritz E, Wi?cek A. Exposure of pregnant rats to cigarette- smoke condensate causes glomerular abnormalities in offspring. Kidney Blood Press Res, 2012, 36(1):162-171. | [42] | Howie GJ, Sloboda DM, Kamal T, Vickers MH . Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol, 2009, 587(Pt 4):905-915. | [43] | Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, Taylor PD . A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol, 2005, 288(1):R127-R133. | [44] | Liang C, Oest ME, Prater MR . Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B: Dev Reprod Toxicol, 2009, 86(5):377-384. | [45] | Flynn ER, Alexander BT, Lee J, Hutchens ZM, Maric- Bilkan C . High-fat/fructose feeding during prenatal and postnatal development in female rats increases susceptibility to renal and metabolic injury later in life. Am J Physiol Regul Integr Comp Physiol, 2013, 304(4):R278-R285. | [46] | Jackson CM, Alexander BT, Roach L, Haggerty D, Marbury DC, Hutchens ZM, Flynn ER, Maric-Bilkan C . Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol Renal Physiol, 2012, 302(6):F774-F783. | [47] | Chen J, Xu H, Shen Q, Guo W, Sun L . Effect of postnatal high-protein diet on kidney function of rats exposed to intrauterine protein restriction. Pediatr Res, 2010, 68(2):100-104. | [48] | Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A , McMahon AP, Kopan R. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development, 2007, 134(4):801-811. | [49] | Kopan R, Chen S, Liu ZY. Alagille , Notch, robustness: why duplicating systems does not ensure redundancy. Pediatr Nephrol, 2014, 29(4):651-657. | [50] | Cantone I, Fisher AG . Epigenetic programming and reprogramming during development. Nat Struct Mol Biol, 2013, 20(3):282-289. | [51] | Liu FL , Zhou J , Zhang W , Wang H . Epigenetic regulation and related diseases during placental development. Hereditas (Beijing), 2017, 39( 4): 263- 275. | [51] | 刘福林, 周瑾, 张蔚, 汪晖 . 胎盘发育过程中的表观遗传学改变及其相关疾病. 遗传, 2017, 39( 4): 263- 275. [DOI] | [52] | Wang RX , Xu JH . Genomic DNA methylation and histone methylation. Hereditas (Beijing), 2014, 36( 3): 191- 199. | [52] | 王瑞娴, 徐建红 . 基因组DNA甲基化及组蛋白甲基化. 遗传, 2014, 36( 3): 191- 199. [DOI] | [53] | Bannister AJ, Kouzarides T . Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3):381-395. | [54] | Majumder S, Advani A . The epigenetic regulation of podocyte function in diabetes. J Diabetes Complications, 2015, 29(8):1337-1344. | [55] | Hayashi K, Sasamura H, Nakamura M, Sakamaki Y, Azegami T, Oguchi H, Tokuyama H, Wakino S, Hayashi K, Itoh H . Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria. Kidney Int, 2015, 88(4):745-753. | [56] | Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, Itoh H . KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest, 2014, 124(6):2523-2537. | [57] | Gigante M, Piemontese M, Gesualdo L, Iolascon A, Aucella F . Molecular and genetic basis of inherited nephrotic syndrome. Int J Nephrol, 2011, 2011:792195. | [58] | Ma KL, Ni J, Wang CX, Liu J, Zhang Y, Wu Y, Lv LL, Ruan XZ, Liu BC . Interaction of RAS activation and lipid disorders accelerates the progression of glomerulosclerosis. Int J Med Sci, 2013, 10(12):1615-1624. | [59] | Pereira RL, Felizardo RJF, Cenedeze MA, Hiyane MI, Bassi êJ, Amano MT, Origassa CST, Silva RC, Aguiar CF, Carneiro SM, Pesquero JB , Araújo RC, de Castro Keller A, Monteiro RC, Moura IC, Pacheco-Silva A, Camara NOS. Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice. Dis Model Mech, 2014, 7(6):701-710. | [60] | Reiser J, Nast CC, Alachkar N . Permeability factors in focal and segmental glomerulosclerosis. Adv Chronic Kidney Dis, 2014, 21(5):417-421. | [61] | Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB . A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science, 2005, 308(5729):1801-1804. | [62] | Kitiyakara C, Eggers P, Kopp JB . Twenty-one-year trend in ESRD due to focal segmental glomerulosclerosis in the United States. Am J Kidney Dis, 2004, 44(5):815-825. | [63] | Shankland SJ . The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int, 2006, 69(12):2131-2147. | [64] | Ranganathan S . Pathology of podocytopathies causing nephrotic syndrome in children. Front Pediatr, 2016, 4:32. | [65] | Tsukaguchi H, Sudhakar A, Le TC, Nguyen T, Yao J, Schwimmer JA, Schachter AD, Poch E, Abreu PF, Appel GB, Pereira AB, Kalluri R, Pollak MR . NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J Clin Invest, 2002, 110(11):1659-1666. | [66] | Hodgin JB, Rasoulpour M, Markowitz GS , D'Agati VD. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol, 2009, 4(1):71-76. | [67] | Plank C, ?streicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, D?tsch J . Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int, 2006, 70(11):1974-1982. | [68] | Schreuder MF, Van Wijk JAE, Fodor M , Delemarre-van de Waal HA. Influence of intrauterine growth restriction on renal function in the adult rat. J Physiol Biochem, 2007, 63(3):213-219. | [69] | Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu J-y, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, Otto EA, Han Z, Hildebrandt F . KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest, 2015, 125(6):2375-2384. | [70] | Chanchlani R, Parekh RS . Ethnic differences in childhood nephrotic syndrome. Front Pediatr, 2016, 4:39. | [71] | Rheault MN, Gbadegesin RA . The genetics of nephrotic syndrome. J Pediatr Genet, 2016, 5(1):15-24. | [72] | Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, SRNS Study Group, Hildebrandt F . A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol, 2015, 26(6):1279-1289. | [73] | Santin S, Tazon-Vega B, Silva I, Cobo MA, Gimenez I, Ruiz P, Garcia-Maset R, Ballarin J, Torra R, Ars E , FSGS Spanish Study Group. Clinical value of NPHS2 analysis in early- and adult-onset steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol, 2011, 6(2):344-354. | [74] | Perico L, Mandalà M, Schieppati A, Carrara C, Rizzo P, Conti S, Longaretti L, Benigni A, Remuzzi G . BRAF signaling pathway inhibition, podocyte injury, and nephrotic syndrome. Am J Kidney Dis, 2017, 70(1):145-150. | [75] | Boubred F, Saint-Faust M, Buffat C, Ligi I, Grandvuillemin I, Simeoni U . Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol, 2013, 2013:346067. | [76] | Sandilands EA, Dhaun N, Dear JW, Webb DJ . Measurement of renal function in patients with chronic kidney disease. Br J Clin Pharmacol, 2013, 76(4):504-515. | [77] | White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR . Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis, 2009, 54(2):248-261. | [78] | Barton M, Sorokin A . Endothelin and the glomerulus in chronic kidney disease. Semin Nephrol, 2015, 35(2):156-167. |
|