| [1] | Dubin DT, Taylor RH . The methylation state of poly A-containing messenger RNA from cultured hamster cells . Nucleic Acids Res, 1975,2(10):1653-1668. | | [2] | Lee M, Kim B, Kim VN . Emerging roles of RNA modification: m 6A and U-tail . Cell, 2014,158(5):980-987. | | [3] | Wei W, Ji X, Guo X, Ji S . Regulatory Role of N 6- methyladenosine (m 6 A) Methylation in RNA processing and human diseases . J Cell Biochem, 2017,118(9):2534-2543. | | [4] | Zhang X, Jia GF . RNA epigenetic modification: N 6- methyladenosine. Hereditas(Beijing) , 2016,38(4):275-288. | | [4] | 张笑, 贾桂芳 . RNA表观遗传修饰:N 6-甲基腺嘌呤 . 遗传, 2016,38(4):275-288. | | [5] | Li YL, Yu J, Song SH . Recent progresses in RNA N6-methyladenosine research. Hereditas(Beijing), 2013,35(12):1340-1351. | | [5] | 李语丽, 于军, 宋述慧 . RNA中6-甲基腺嘌呤的研究进展. 遗传, 2013,35(12):1340-1351. | | [6] | Visvanathan A , Somasundaram K.mRNA traffic gontrol reviewed: N6-Methyladenosine (m 6 A) takes the driver's seat . Bioessays, 2018,40(1). doi: 10.1002/bies.201700093. | | [7] | Jacob R, Zander S , Gutschner T. The Dark side of the epitranscriptome: chemical modifications in long non- coding RNAs . Int J Mol Sci, 2017, 18(11): pii: E2387. | | [8] | Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF . N6-methyladenosine marks primary microRNAs for processing . Nature, 2015,519(7544):482-485. | | [9] | Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B , N6-adenosine methylation in MiRNAs . PLoS One, 2015,10(2):e0118438. | | [10] | Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM . Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase . RNA, 1997,3(11):1233-1247. | | [11] | Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC . N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells . Nat Cell Biol, 2014,16(2):191-198. | | [12] | Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ , S Adhikari,Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, U Dahal, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase . Cell Res, 2014,24(2):177-189. | | [13] | Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T . Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle . J Biol Chem, 2013,288(46):292-302. | | [14] | |
| [1] |
张宗旺, 熊敬维. AARS1/2:从蛋白质翻译到代谢与免疫调控的双重功能[J]. 遗传, 2025, 47(9): 967-978. |
| [2] |
安赛男, 杨欢淳, 姜姗, 李靖轩, 张根发. 融入生物信息学分析的综合性探究型表观遗传学实验设计与探索[J]. 遗传, 2025, 47(5): 600-608. |
| [3] |
安梦婷, 郭冠麟, 吴杰, 孙文靖, 贾学渊. 基于生物信息学分析胃癌双微体中增强子的调控机制[J]. 遗传, 2025, 47(5): 558-572. |
| [4] |
刘灿, 翟巍巍, 吕雪梅. 肿瘤演化过程中的进化生态:概念、应用与创新[J]. 遗传, 2025, 47(2): 228-236. |
| [5] |
张宏博, 孙凤桂, 孙建伟, 汤琦, 张旭. 乳腺肿瘤干细胞在乳腺癌发生、发展及耐药中的作用[J]. 遗传, 2025, 47(10): 1099-1117. |
| [6] |
王陈颖, 肖荟尹, 诸志鹏, 郑素雅, 徐良, 陈烨. 子宫平滑肌肉瘤的分子遗传学特征与研究进展[J]. 遗传, 2024, 46(8): 603-626. |
| [7] |
刘岱缘, 张朝晖, 康现江. 精子染色质完整性对功能的影响及其检测方法研究进展[J]. 遗传, 2024, 46(7): 511-529. |
| [8] |
张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
| [9] |
沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
| [10] |
李卉, 吴光明. 肿瘤抑制蛋白PDCD4结构特性与疾病关系解析及研究进展[J]. 遗传, 2024, 46(4): 290-305. |
| [11] |
孙朝冉, 吴旭东. 组蛋白变体H2A.Z的转录调控功能与动态作用机制[J]. 遗传, 2024, 46(4): 279-289. |
| [12] |
闫旭, 郭影, 孙冬琳, 吴楠, 金焰. 肿瘤抗血管生成治疗耐药机制[J]. 遗传, 2024, 46(11): 911-919. |
| [13] |
王艳妮, 李佳. 单细胞DNA甲基化测序数据处理流程与分析方法[J]. 遗传, 2024, 46(10): 807-819. |
| [14] |
孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
| [15] |
严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
|